From C to Elastic Circuits

Lana Josipovic*, Philip Brisk†, Paolo Ienne*
*École Polytechnique Fédérale de Lausanne, Switzerland, †University of California, Riverside, USA
lana.josipovic@epfl.ch, philip@cs.ucr.edu, paolo.ienne@epfl.ch

Abstract—Today’s high-level synthesis (HLS) tools rely on static scheduling. When control and/or data dependencies that cannot be resolved at compile time are present in program code, HLS tools produce pessimistic schedules based on worst-case assumptions, which may not be the common case or may never even occur in practice. At present, the only alternative is for circuit designers to eschew HLS, and to instead implement dynamic scheduling, which stalls or slows execution when control or data hazards manifest themselves at runtime, in hardware. This paper examines these issues in detail using a histogram kernel as a case study. Starting with an inefficiently scheduled implementation produced by Vivado HLS, we introduce a latency-insensitive control mechanism that enables reaching a point in the design space that Vivado HLS could not discover on its own. We describe a step-by-step process by which a compiler could infer a dynamically scheduled circuit, starting from a high-level C language specification.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have recently been integrated into datacenters [23], [6], [2], packaged with processors [7], and introduced to new application domains; however, their commercial success critically depends on the issue of programmability, i.e., the ability of software application developers with little to no hardware experience to nonetheless be able to accelerate their applications [14], [13], [22]. To ease the burden on the programmer, High-Level Synthesis (HLS) tools can generate hardware designs from high level programming languages, providing a higher level of abstraction for accelerator design compared to traditional design methodologies using VHDL or Verilog [26], [4].

Despite commercial adoption in the last decade, HLS tools are limited in scope. For certain types of applications, namely loop nests whose memory access patterns and control dependencies can be resolved statically, HLS tools produce accelerator architectures that are competitive with manual hardware designs; however, achieving optimal design points requires peculiar code restructuring, expert user interaction, and extensive trial and error with configuration parameter settings. Moreover, modern HLS tools cannot produce good quality designs for irregular applications, whose control and data dependencies cannot be resolved statically; they produce static schedules and control mechanisms based on worst-case assumptions regarding memory and control dependencies, which significantly limits the throughput achievable by pipelining.

Using a histogram loop kernel as a case study, this paper points towards a fundamentally different form of HLS for irregular applications; a subsequent paper describes the tool itself [18]. Specifically, we demonstrate how to transform arbitrarily-written high-level code into a dynamically scheduled circuit. In doing so, we elucidate design points that traditional HLS tools, which employ static scheduling, cannot discover on their own. The ability of our approach to find these design points without requiring significant code restructuring by the programmer is likely to be extremely important in the future.

II. TOWARDS DYNAMIC SCHEDULING

Modern HLS tools build datapaths that are controlled using a pre-planned, central controller. The controller relies on a static schedule, fixed at compile time, to determine the cycle at which each operation executes [12]. Figure 1 depicts a simple histogram kernel that illustrates the limitations of static scheduling. Within the loop, a data dependency may exist between the memory read of hist[x[i+1]] and the memory write to hist[x[i]] of the previous iteration, depending on the contents of array x. A static schedule must assume that the dependency occurs between each pair of loop iterations, whereas the dynamic design only stalls when dependencies occur (in this case, between iterations 2 and 3).
guaranteed to be valid for all possible input values, but is far from performance-optimal.

Figure 1 contrasts the static schedule with an example of a dynamic schedule in which the dependency only occurs between the second and third iterations. When the dependency does not occur, the dynamic schedule initiates a new iteration each cycle, yielding an improvement of $6 \times$ compared to the static schedule; when the dependency does occur, the dynamic schedule stalls the pipeline, allowing the write to complete before the read begins. This paper describes a step-by-step process to convert the histogram kernel from Figure 1 into a dynamically scheduled circuit; a subsequent paper encapsulates this process into a novel dynamically scheduled HLS tool [18].

III. ELASTIC CONTROL

Latency-insensitive circuit design techniques can implement dynamic schedules by replacing the pre-planned controller with a distributed control system that makes local dynamic scheduling decisions [5], [16], [8], [25]: each dynamic dependence is converted to a Boolean condition, and each operation can execute once all of its triggering conditions are satisfied.

We use elastic circuits [8] to implement synchronous dynamic scheduling in hardware. Each elastic component [15], [8] communicates with its predecessor(s) and successor(s) through a pair of handshake control signals: a valid signals informs the successor that the component is ready to transmit a valid piece of data, whereas the ready signal indicates to the predecessor that the component can now accept a new piece of data. Transferring a piece of data from one component to another is referred to as an abstract token transfer [21].

Figure 2 shows the LLVM compiler representation of the histogram kernel, which, essentially, consists of a single basic block. Prior to the first iteration, the iterator i is set to zero; otherwise, the loop uses the value of i calculated by the previous iteration. Within the loop body, the values of x, $weight$, and $hist$ are loaded from memory and used to compute the new $hist$ value. The iterator i is incremented by 1 and compared to the loop bound to decide the loop termination condition.

We describe a systematic process to convert a loop kernel to an elastic circuit: (1) Each loop body is a dataflow graph: we translate each operator into an equivalent elastic component and each dataflow edge into bidirectional handshake signals to connect dependent components. (2) For each variable that enters the loop, we allocate a Merge node to propagate the variable into the loop body. (3) For each variable that exits a loop, we allocate a Branch node to transmit the variable to a designated successor basic block outside the loop body, triggered by the loop control condition. (4) Components that have multiple successors within the loop body require a Fork to distribute copies of its data to all of its successor components.

This strategy can convert the histogram kernel shown in Figure 2 into an elastic circuit shown in Figure 3. The iteration variable i requires Merge and Branch nodes: the Branch at the output either transmits the updated value of i back to the Merge or to the loop exit, depending on the triggering condition (i.e., the comparison of i with the loop bound N); if i is not used outside the loop, then the value can be discarded when the loop terminates.

The elastic circuit shown in Figure 3 contains two combinatorial cycles. We break these cycles by inserting an elastic buffer (Buff) in a portion of the circuit that is common to both cycles, as shown in Figure 4. Buffs can be inserted on any wire without affecting circuit functionality, since elastic control signals implicitly synchronize data communication [9].

IV. FIFO BUFFERS: INCREASING THROUGHPUT

The cycle-free elastic circuit shown in Figure 4 is correct and fully functional, but does not offer particularly high performance. Specifically, long paths take a long time to process tokens; when a Fork distributes a data value to several independent pipelines, a slow path that cannot rapidly consume
tokens may cause backpressure on one of the Fork outputs. This prevents the Fork from generating new tokens and starves its other successor pipelines, each of which may be ready to consume additional tokens.

In Figure 4, the store component cannot accept a token from the load operation until it receives a token from the multi-cycle floating-point adder, which will eventually create backpressure on the upper Fork. Similarly, the floating-point adder must synchronize its two input values, which may not arrive simultaneously. Consequently, the floating-point adder must stall the earlier-arriving input (i.e., the weight value), while waiting for the other. The backpressure imposed on the left and the middle outputs of the upper Fork prevent it from generating a token allowing the update of value \(i \) on the right-hand side of the circuit. The Fork must hold the value of \(i \) for the current iteration until all three outgoing branches have consumed their respective tokens, which significantly lowers the loop initiation interval. Absent backpressure, the updated value of \(i \) (i.e., \(i++ \)) could be computed every clock cycle.

To increase throughput, we insert elastic FIFOs into the paths with long latencies. The tokens can accumulate in the FIFOs, which mitigates the backpressure issue, allowing the faster paths to consume Fork-generated tokens at a higher rate. Figure 5 shows the histogram circuit from Figure 4, with FIFOs selectively inserted after Forks. After FIFO insertion, a new loop iteration can start as soon as the next value of iterator \(i \) is computed, and the loop condition has been evaluated. New tokens can then be injected to all operations downstream from the Fork, effectively pipelining the design.

V. OUT-OF-ORDER MEMORY INTERFACE

Thus far, we have ignored the issue of memory dependencies and the possibility of memory access reordering. In Figure 1, it is desirable to read hist before the write from the preceding iteration completes, if both the read and write target different memory addresses. These memory accesses should only be serialized if a dependency exists. Such behavior requires a memory interface that can correctly handle memory accesses that arrive in arbitrary order, while respecting data dependencies and ensuring appropriate ordering for semantic correctness.

We have previously demonstrated a load-store queue (LSQ) tailored for spatial computing architectures with dynamically scheduled circuits [17]. The novelty lies in an allocation policy that allows the LSQ to correctly handle out-of-order memory requests in a dataflow-like context. The allocation is organized into groups corresponding to the basic blocks of a high-level language program: whenever a basic block starts to execute, all of the memory accesses belonging to that basic block are allocated in a predetermined sequential order; within the dynamic execution, the memory accesses may be issued to the LSQ in any order. The allocation policy allows the basic block control circuitry to know precisely which allocated LSQ entry corresponds to each memory access. Accesses to provably disjoint regions of memory can be disambiguated at compile-time, and distinct LSQs can be allocated for each region.

Each iteration of the histogram application features a load and a store operation which target a data structure hist, stored in a unique memory; separate memories are allocated to provide accesses to weight and x, as these accesses provably do not conflict with one another or accesses to hist; as their access patterns are deterministic, they do not require an LSQ. Thus, a single LSQ is allocated for hist which features one load and one store port, corresponding to the basic block. Once the execution of the next loop iteration has been determined, a dedicated signal triggers the allocation of the read and write accesses into the LSQ (Figure 6). The LSQ exploits this information to handle out-of-order memory requests arriving from the dynamically scheduled circuit.

Figure 7 depicts our dynamically scheduled elastic histogram (left-hand-side) circuit with LSQ interface (right-hand side). The memory interface ensures that LSQ allocation is performed in the correct sequential order. The LSQ, not shown in Figure 7,
honors memory dependencies, and postpones reads of hist that are dependent on any not-yet-completed writes. This design realizes the dynamic schedule shown in Figure 1.

VI. EXPERIMENTAL RESULTS

We compare FPGA implementations of the histogram kernel (Figure 1) using state-of-the-art static scheduling (Vivado HLS [26]) and three designs based on dynamic scheduling. The first dynamic scheduler (Huang et al. [15]) is similar in principle to elastic control, but features memory serialization (no LSQ), and employs a single Branch node [15]; the second dynamic scheduler [Elastic (LSQ)] employs elastic scheduling as described in this paper, and features an LSQ, but does not include FIFO buffers. The third dynamic scheduler [Elastic (FIFO+LSQ)] features FIFO buffers in addition to the LSQ. All four designs use identical arithmetic units and memory interfaces. Table I reports the timing (i.e., loop initiation interval, clock period, and latency), and resource requirements (i.e., FPGA slices) of these experiments.

A. Static Scheduling (Vivado HLS)

Memory dependencies between the reads and writes of hist cannot be disambiguated at compile time. Consequently, the static scheduler constructs a conservative and inefficient schedule, assuming that each read is dependent on the previous write. In its favor, the static schedule features the lowest critical path delay and consumes the smallest number of FPGA slices.

B. Dynamic Scheduling (Huang et al. [15])

The dynamic scheduling approach introduced by Huang et al. [15] originally targeted an elastic coarse-grained reconfigurable array—we adapt their approach for an FPGA. Huang et al. use the same elastic components as described here, but take a slightly different approach to synthesizing elastic circuits. Most importantly, they employ a single Branch node for all signals that exit a basic block, which synchronizes all output values, thereby preventing pipelining across basic block boundaries (and thus, notably, of loops); in contrast, we allocate a separate Branch node for each basic block output, which allows us to decouple the fast outputs from the slower ones. Secondly, Huang et al. do not employ an LSQ, and therefore must serialize memory accesses that cannot be disambiguated at compile-time, which is similar to how a static scheduler would generate a modulo schedule. As shown in Table I, Huang et al. achieve a conservative initiation interval, despite the flexibility provided by dynamic scheduling, and their results are uniformly worse than Vivado HLS. Dynamic scheduling in isolation is insufficient to achieve high throughput.

C. Dynamic Scheduling [Elastic (LSQ)]

Replacing the single Branch node with multiple Branch nodes and providing an LSQ overcomes many of the bottlenecks of Huang et al.’s dynamic scheduler. Although the critical path delay increases by a factor of $1.2 \times$, the II and latency are reduced by respective factors of $3.2 \times$ and $2.9 \times$. This timing overhead is non-negligible and is due to the critical path of the LSQ [17]; however, the increase in cycle time is conspicuous small compared to the potential improvement in II, leading to higher overall throughput. The area of the datapath is only slightly increased, but the overall area is $7.8 \times$ larger due to the cost of the LSQ and its interface; this is simply the price that one must pay to benefit from memory access reordering.

D. Dynamic Scheduling [Elastic (FIFO+LSQ)]

Adding FIFOs to the design reduces both the II and latency by $1.6 \times$ without increasing the critical path delay; the FIFO buffers increase the datapath area by an additional 40%.

In both of our elastic designs, the pipeline throughput dynamically varies based on the input data; when there are no dependencies, the dynamic schedule achieves the optimal II; otherwise, the pipeline stalls. In contrast, Vivado HLS and Huang et al.’s dynamic scheduler stall the pipeline for all memory accesses that the compiler cannot disambiguate.

VII. RELATED WORK

Prior work has explored construction of dynamically-scheduled circuits using latency-insensitive control [5], [16],
TABLE I: Experimental results for the histogram kernel: static scheduling (Vivado HLS); dynamic scheduling, limited by memory serialization and a single Branch node (Huang et al. [15]); dynamic scheduling featuring elastic control and an LSQ to provide memory access reordering [Elastic (LSQ)]; and dynamic scheduling featuring elastic control with FIFO buffers and LSQ [Elastic (FIFO+LSQ)].

<table>
<thead>
<tr>
<th>Design</th>
<th>H_{avg}</th>
<th>CP (ns)</th>
<th>Time (µs)</th>
<th>Slices</th>
<th>LSQ Slices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vivado HLS</td>
<td>11</td>
<td>3.3</td>
<td>36.3</td>
<td>130</td>
<td>0</td>
</tr>
<tr>
<td>Huang et al. [15]</td>
<td>12</td>
<td>4.9</td>
<td>59.3</td>
<td>134</td>
<td>0</td>
</tr>
<tr>
<td>Elastic (LSQ)</td>
<td>3.7</td>
<td>5.7</td>
<td>20.8</td>
<td>145</td>
<td>901</td>
</tr>
<tr>
<td>Elastic (FIFO+LSQ)</td>
<td>2.3</td>
<td>5.7</td>
<td>13.3</td>
<td>200</td>
<td>901</td>
</tr>
</tbody>
</table>

[8], [25], [19]; however, they lack generic transformations to derive such circuits from high-level language specifications. Compilers from high-level language specifications to asynchronous circuits have been investigated [11], [3]; the techniques summarized here share principle similarities, but target a perfectly synchronous implementation which eschews many of the fundamental difficulties that have historically plagued asynchronous design styles. Recent HLS advances extended static scheduling [1], [20], [24], [10] to handle specific types of dynamic events, which limits the achievable performance improvements to specific cases; in contrast, the case study presented here is more general and resulted in a 100% dynamically-scheduled circuit.

VIII. CONCLUSION

Dynamic scheduling is key to accelerate irregular applications using FPGAs but is insufficient on its own. Using a simple histogram kernel, we demonstrate that dynamic memory access disambiguation and mitigating the effects of backpressure among concurrent arithmetic pipelines are key to throughput maximization. Although we generated our histogram circuits manually, opportunities to automate these transformations are clear. Future work will develop a compiler that can convert a high-level language program specification into an elastic circuit that features the additional optimizations evaluated here.

REFERENCES