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Abstract— We present a hybrid energy management technique that exploits
the variability of and correlations among the computational loads of tasks in a
real-time application with soft timing constraints. In our technique, task load
variability and correlations are captured in stochastic models that incorporate
certain salient features and essential characteristics of the application. We use
the stochastic models in formulating and solving the energy management prob-
lem for applications with soft timing constraints running on multiprocessor sys-
tems with dynamic voltage scaling (DVS). We present a novel optimization for-
mulation for minimizing average energy consumption while providing a prob-
abilistic guarantee for satisfying timing constraints.We compare our stochastic
models and energy management scheme with other models and schemes that do
not capture/exploit either the variability of or the correlations among the com-
putational loads of tasks.

I. INTRODUCTION

Minimization of energy consumption is a primary concern in the
design of complex embedded systems, such as those implemented
with multiprocessors and multicore systems. These systems can
be found in a wide range of products and applications ranging
from mobile consumer electronics to high-performance comput-
ing. With the advent of Systems-on-Chip (SOC), Networks-on-
Chip (NOC), platform-based design, and programmable and re-
configurable architectures, almost all of the complex systems that
will be conceived in the future will arguably have such multicore
architecture. Hardware and operating-system (OS) support for
implementing intelligent energy management schemes for these
kinds of systems are currently being developed [1]. Energy con-
sumption is increasingly an issue not only for battery operated de-
vices; even if unlimited power is available, a large number of com-
ponents tightly packed onto a chip and a large number of chips
packed into a small volume pose cooling and reliability problems.

We address the energy management problem for real-time ap-
plications that have been decomposed into concurrent, interde-
pendent tasks and that are intended to run on communicating
multi-processor systems. We consider applications with repet-
itive behaviour—as in systems for image, speech and video
processing—and with soft real-time constraints—that is, with
some tolerance to deadline misses. We represent these applica-
tions with task graphs with precedence relationships and timing
constraints [2]. We assume that applications will run on a multi-
core platform with Dynamic Voltage Scaling (DVS) enabled Pro-
cessing Elements (PE) and adaptive bandwidth Communication
Resources (CR) where the system architecture has been already
determined. Construction and exploitation of stochastic models—
that capture correlations—for energy management are the major
contributions of this work. In this paper, we do not concentrate
on the details of the hardware platform, and we assume that the
tasks composing the application have been already scheduled and
assigned to processing elements.

This work has two key contributions:
• We demonstrate, using the important multimedia application of
MPEG video decoding as an example, that there is significant
variability in and correlations among the workloads of concurrent
tasks that constitute the application. We illustrate on this example
how energy management ignorant of task load variability and/or
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correlation can be significantly sub-optimal or not properly ful-
fill timing constraints. We introduce stochastic application models
that capture workload variations and correlations and show that
these models predict well the workloads of tasks in any MPEG
execution.
• We present a novel optimization formulation which results in
processor Voltage Settings (VS’s) that minimize the average en-
ergy consumption of the system while providing a probabilistic
guarantee for satisfying timing constraints. This formulation fully
exploits time-variability and correlation information captured by
the stochastic application models. The optimization problem is
solved off-line and its results stored in a look-up table. The opti-
mized energy management policy is realized during run-time per-
forming only look-ups of the stored off-line optimization results.
We also describe a simple on-line heuristic addition to our stan-
dard optimized energy management scheme that achieves further
energy savings by performing simple on-line computations and ta-
ble look-ups.

The rest of the paper is organised as follows: In the rest of this
section we present a simple, contrived example and conclude with
a review of previous work. In Section II, we present our stochas-
tic application models and demonstrate that significant variabili-
ties and correlations exist in actual application runs. We then, in
Section III, present our novel optimization formulation, its off-line
solution, and a simple on-line heuristic that achieves additional
energy savings. Experimental results on a multimedia application
and comparison with other models and schemes are presented in
Section IV. Conclusions and future directions are presented in
Section V.
A. Motivating example
When there are significant correlations among the Computational
Demands (CD’s) of different tasks composing an application, en-
ergy management based on the assumption of statistical indepen-
dence may be (i) incorrect—i.e., may not achieve the required
probability of satisfaction of the timing constraints—or (ii) sub-
optimal. To illustrate this point, consider two tasks u1 and u2
running in tandem on a processor. Suppose that each can have
a computational load of either l or h (l < h) with a probability of
0.5 each. Consider the following three scenarios:
(a) u1 and u2 are independent
(b) u1 and u2 are fully positively correlated, i.e., either both of
them have a workload of h, or both have a workload of l.
(c) u1 and u2 are fully negatively correlated, i.e., when one has a
workload of l, the other one has a workload of h.

Scenario P(2l) P(l +h) P(2h)
(a) Indep. 0.25 0.50 0.25

(b) Full pos. 0.50 0 0.50
(c) Full neg. 0 1 0

To see how ignoring correlations may lead to miscomputation of
the timing deadline satisfaction probability, consider the following
situation. Suppose that (b) is the case and assume that u1 and u2 are
required to meet a deadline with a minimum probability of 0.75.
Consider an energy management policy that assumes that u1 and
u2 are independent, and slows down the processor to a constant
speed so that the deadline is met exactly when the computational
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demand is l +h. At this speed the deadline is made if the demand
is 2l or l + h but is missed when it is 2h. Since tasks are corre-
lated, this policy meets the deadline 50% of the time instead of the
required 75%.

To see how ignoring correlations may lead to suboptimal en-
ergy savings, suppose now that (c) is the case and assume that u1
and u2 are required to meet a deadline with 100% probability. If
an energy management policy operates assuming that the tasks are
independent, at least 25% of the time it will decide to run the pro-
cessor fast enough to finish a computational load of 2h within the
deadline. However, since the true probability of this worst case is
0, this policy is sub-optimal.

We would also like to point out that the total worst-case execu-
tion time in cases (a) and (b) is equal to 2h, whereas it is equal
to l + h in case (c). In general, when tasks are considered inde-
pendent, the total worst-case execution time will always be equal
to the sum of the individual worst-case execution times of the
tasks. However, with correlated tasks, the total worst-case exe-
cution time may be (considerably) smaller than the sum of the in-
dividual worst-cases. This key observation tells us that one could
exploit correlation information (but not load variability) for energy
savings, even for applications with hard real-time deadlines.
B. State of the art
Most of the previous work in this area concentrates on real-time
applications with hard timing constraints ([3], [4], [5], among oth-
ers). Systems with hard real-time deadlines are forced to oper-
ate under the assumption of worst-case execution times. How-
ever, for a large class of applications running on power-sensitive
portable systems, the constraints on real-time behavior are not as
strict. For instance, for streaming multi-media applications, some
degradation in quality and performance is acceptable if significant
energy savings are achieved in return. Such savings are possi-
ble when worst-case computational demand occurs rarely and is
significantly different from the average case [6], [7], [8], as we
demonstrate in this paper for a streaming multimedia application.
Yet, little work has been done on energy minimization that can ex-
ploit the time-variability in the computational demands of the tasks
that constitute an application.

Two notable exceptions are [9] and [10]. In [9], authors de-
scribe a heuristic scheme that provides probabilistic completion ra-
tio guarantees while trying to minimize energy consumption. They
employ probability distributions for execution times of tasks, but
the execution times of different tasks are assumed to be indepen-
dent of each other. In Section IV, we will compare the results we
obtain with our energy management scheme with the one proposed
in [9]. In a similar way to our work, in [10] authors present and
use for power management a stochastic model for prediction of ex-
ecution times for streaming multimedia applications. They fit the
parameters of their analytical model to experimental frame inter-
arrival time data but do not model the breakdown of the load to
concurrent tasks running on a multi-core system.

We will demonstrate with our results in Section II and Sec-
tion IV that one can exploit correlation information for energy sav-
ings even for applications with hard real-time deadlines operating
under the assumption of worst-case execution times. In Section IV,
we also compare our results with the ones obtained with the energy
management scheme proposed in [3] that is based on worst-case
execution times assuming independence.

II. STOCHASTIC MODELING OF APPLICATIONS

A. Preliminaries
This section is concerned with the stochastic modeling of the com-
putational demand (CD) of a task, a term we use to refer to a nor-
malized measure of the workload of a task that is independent of
processor speed. For this purpose, we use the number of clock cy-
cles required to execute the task on a given processor. For many

applications, the CD and its breakdown to individual tasks exhibit
significant variability over time [6], [7], [8] – a fact that can be
exploited to reduce energy consumption when probabilistic timing
constraints apply [11], [9].

We represent the variability of task CD’s and their correlation
by a joint probability distribution function dist. For the represen-
tation and manipulation of dist to be manageable, we quantize the
CD for each task u and represent it using a relatively small num-
ber of discrete values Qu = {0,1,2, ...,qu}. We have used val-
ues of qu ranging from 16 to 256. dist is a probability distribu-
tion over a discrete space, i.e., dist(L1, ...,Ln) ∈ [0,1] where each
Li ∈ 0,1,2, ...,qi is the quantized CD for task i. dist is obtained
from experimental data. We run the application on a set of inputs
and record at each period the number of cycles spent on execut-
ing each task. To minimize the effects of context switches, cache
misses, and branch mispredictions on the measured number of ex-
ecution cycles, we run the application several times on the same
input and average the results. We divide the range between zero
and the maximum CD for task u uniformly into qu intervals. The
demand of each task in each period is converted to a discrete quan-
tity using this quantization. During each run, at each period p, the
quantized tuple of CD’s (L(p)

1 ,L(p)
2 , ...,L(p)

N ) constitutes one “ob-
servation” in the space of observations Q1 ×Q2 × ...×QN . Af-
ter running the application on a set of inputs and obtaining |O|

observations, dist(L(p)
1 ,L(p)

2 , ...,L(p)
N ) is approximated by dividing

by |O| the number of periods that (L(p)
1 ,L(p)

2 , ...,L(p)
N ) is observed.

The averaging over different inputs and time is implicit here.

B. Stochastic modeling of MPEG2 decoding
As our case study, we focused on the widely-used and computa-
tionally intensive MPEG2 video decoding application. We used
the slice-based task decomposition and assignment to four proces-
sors that was found to yield the best performance in [12] with a
frame rate of 24 per second. The implementation of [12] divides
the computation associated with each slice into two separate tasks:
variable-length decoding (VLD) and motion compensation (MC).
The task graph representing this decomposition and task assign-
ment is given in Figure 1. Numbers within ovals correspond to
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Fig. 1. Task graph for MPEG2

the slice number and dashed arrows represent precedence relations
that are due to tasks being assigned to the same processor.

We collected experimental data using a set of ten MPEG2 movie
segments from feature movies. Each segment was of approxi-
mately ten minutes long, i.e., consisted of roughly 14.5 thousand
frames with 19 slices each. Figure 2 presents CD histograms for
a slice chosen from the middle of the screen. The bottom pair of
histograms correspond to data collected from a single segment, the
top pair is obtained using the entire collection of movies. The bot-
tom histograms are qualitatively representative of all task demand
histograms obtained from MPEG2. Tasks’ CD distributions, while
concentrated around their means, have long tails. The shapes of the
distributions for all MC tasks appear similar. The same is true for
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Fig. 2. Task workload histograms
VLD tasks, while the shapes for MC tasks and VLD tasks appear
to be qualitatively different from each other.

Figure 3 presents the correlation coefficients of the workload for
tasks of the center slice (VLD10 and MC10) with the workloads of
other VLD and MC tasks as a function of the distance of the slices
from the center slice. The dotted lines show data obtained from a
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Fig. 3. Task workload correlations

particular movie segment, whereas the solid lines represent aggre-
gate statistics. Correlation graphs obtained from other input files
are very similar. Two facts emerge distinctly from this data: (i) the
tasks of slices close to each other are highly correlated, and (ii) the
MC and VLD tasks of a particular slice are highly correlated with
each other.

If all processors in Figure 1 are run at the same speed, the data
collected from the MPEG2 runs indicates that the critical path
through the task graph is VLD0 → VLD1 → VLD2 → ... →
VLD19 → MC19. The sum of workloads of tasks along this path,
in the worst-case in all of our MPEG2 executions was around 27.7
million cycles. If we were to assume that the tasks’ workloads
were independent, the worst-case demand along this path would
have been the sum of worst-case loads for each task, amount-
ing to around 63.8 million cycles. This significant difference
demonstrates that ignoring task correlations for MPEG2 decoding
would result in far from optimal energy management decisions,
even when operating under the assumption of worst-case execu-
tion times.

III. ENERGY MINIMIZATION WITH STOCHASTIC MODELS

A. Preliminaries and definitions

Our problem formulation starts from an application that has been
decomposed into a set of concurrent tasks as described in the previ-

ous section for MPEG2 decoding. The set of tasks and their prece-
dence dependencies are represented using a directed acyclic graph
called the task graph [2], [3]. Each node u in the graph represents
a task and each edge (u,v) indicates that task v can only start exe-
cuting after u finishes. We also take as given (i) the assignment of
tasks to processing elements (PEs) and (ii) the order in which the
tasks on a given PE are executed, i.e., the task scheduling. Edges
are added to the task graph to represent precedence relationships
due to the scheduling of tasks that run on the same PE.

Each task can have a deadline constraint Du on its finish time Fu,
and an additional global deadline constraint DDAG for the whole
task graph that restricts all tasks’ finish time. Tasks in the task
graph may represent communication events as well as computa-
tional tasks. Likewise, the “PE’s” are not necessarily processors
but may represent communication resources such as a bus, on-chip
network or ethernet connection. For simplicity of exposition, we
assume that the power supply voltages for the DVS enabled PE’s
are continuously adjustable.

Our first goal is to determine, by an off-line computation, fixed
voltages for each task that minimize the average energy consump-
tion while providing a probabilistic guarantee for the satisfaction
of the timing constraints.

B. Energy consumption model and averaging

The goal of this section is to describe how average energy con-
sumption is computed using the stochastic model for the appli-
cation. Let Lu be a stochastic variable representing the compu-
tational demand associated with a task during one period. The
stochastic application model discussed in Section II provides a
joint probability density dist for the vector of computational de-
mands Lu of all tasks.

We use Lu and the parameters of the processor to compute aver-
age energies. The cycle-time (CT) for a PE while it is running task
u is a function of Vdd u, the voltage setting for task u.

CT = kct
Vdd u

(Vddu −Vth)act
(1)

where kct and act are technology related constants and Vth is the
threshold voltage [3]. The execution time tu for a task u is then
given by

tu = Lu CT = Lu kct
Vdd u

(Vddu −Vth)act
(2)

The dynamic energy consumed by a PE to execute a task u is given
by

Edyn
u = Lu Cu Vdd

2
u (3)

where the “effective switching capacitance” Cu is a measure of the
utilization of the PE by the task u [3]. The leakage energy and the
voltage transition overhead energy and time penalty can be easily
also included in the formulation, however we do not consider them
here for the sake of simplicity [5], [13].

The total energy consumed in all PEs during one period of the
application can then be computed as follows

Etot =
N

∑
u=1

Edyn
u (4)

Since Lu is a randomly varying quantity, the total energy consumed
in the PE’s during one period of the application is also a random
quantity. Our energy management scheme minimizes the average
(expected) energy consumption

E

[
Etot] =

N

∑
u=1

E

[
Edyn

u

]
(5)
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where E [·] represents expectation according to the joint probabil-
ity distribution dist of the computational demands Lu. In (5), we
have

E

[
Edyn

u

]
= E [Lu]Cu Vdd

2
u (6)

The average energy consumption in (5) is the objective function
that our formulation aims to minimize. Given a voltage setting for
all the tasks, the average energy in (5) can easily be computed us-
ing the average computational demands E [Lu] for the tasks. E [Lu]
can be computed using the marginal probability densities for Lu
which can be deduced from dist.

C. Formulation of probabilistic performance guarantee

We achieve minimized energy consumption while providing prob-
abilistic performance guarantees for the satisfaction of timing con-
straints by formulating and solving a constrained optimization
problem with the objective function in (5) and a constraint ex-
pressed as

PSAT = P (Fu ≤ Du, u = 1,2, . . . ,N) ≥ PCON (7)

where Fu and Du are the finish time and deadline for task u, and
P (·) is the probability measure on the joint probability space de-
fined by dist. In words, the probability that all timing constraints
(i.e., task deadline constraints and the global deadline constraint)
are met, PSAT , should be at least PCON . Here 0 ≤ PCON ≤ 1 is a
measure of the tolerance of the application to deadline misses.

PSAT is computed by an explicit enumeration of the points in the
joint probability space. The number of points in this joint proba-
bility space with nonzero probability is bounded by the number of
data points in the application run trace that was used to construct
dist. This number is much smaller than the size of the entire prob-
ability space given by Q1×Q2× ...×QN . We exploit this by using
a sparse representation for dist. The computational complexity of
the evaluation of (7) is O((N +G)K) where N is the number of
tasks, G is the number of edges in the task graph, and K is the
number of points in the probability space with nonzero dist.

For all of the examples we present in this paper, the evaluation
of (7) was fast enough for the optimization to be performed in at
most tens of minutes of CPU time. We can afford much more CPU
time to solve the optimization problem, since this computation is
done off-line. Still, to be able to handle very large task graphs
and/or very long data traces efficiently, in our future research, we
plan to investigate the use of efficient, implicit graph representa-
tions [14] of the joint probability space and density that are able
to exploit special properties such as conditional independence as
well as sparsity.

D. Optimization problem formulation for computing optimal fixed
voltage settings and its off-line solution

We formulate the energy minimization problem as a nonlinear con-
strained optimization problem as follows

min E

[
Etot] =

N

∑
u=1

E

[
Edyn

u

]

subject to P (Fu ≤ Du, u = 1,2, . . . ,N) ≥ PCON (8)

The variables in the optimization formulation above are the Vdd u’s
for the tasks. We also impose upper and lower bounds on the volt-
age settings Vdd u for the tasks in solving (8). In the MPEG2 de-
coding task graph, there are 38 tasks, 2 tasks for each of the 19
slices. Hence, there are 38 variables.

We currently use an SQP (sequential quadratic programming)
optimizer to solve (8), which works much more effectively when

analytical gradients of the objective function and the constraints
are supplied. The analytical gradient of the objective function in
(5) can easily be computed. Unfortunately, the gradient for the
nonlinear constraint in (7) is not analytically computable. We
compute it approximately using finite differences. For most of
the problems we tried, the aforementioned SQP implementation
quickly converges to the optimal solution. The optimization prob-
lem described above is solved off-line, not during run-time.

The optimal fixed voltage settings for the task set produced by
the off-line solution of the optimization problem above are stored
in a table for run-time look-up. For the rest of our treatment, we
will refer to the energy management scheme that uses these fixed
voltage settings as OFLN. This name was chosen to emphasize the
fact that OFLN does not perform any on-line computations. During
run-time, the voltage settings of each PE change from task to task
but the voltage for each task is fixed for all periods and does not
need to be computed on-line.

E. Run-time adjustments to voltage settings

While the Vdd u’s obtained as the off-line solution of the optimiza-
tion problem described above are the optimal fixed voltages, it may
be possible to achieve further energy savings by allowing run-time
adjustments to task voltages. Intuitively, the goal is to lower the
task voltage below Vdd u for periods during which we detect rela-
tively low computational demand while preserving our probabilis-
tic performance guarantee. If in a particular period, right before a
task u is executed, we realize that task u would still have slack even
if worst-case total demand is experienced for the remaining tasks
in the period, we take advantage of this opportunity by lowering
the voltage for u to a value that is smaller than Vdd u read from the
table.

Our optimization formulation selects a subset QSUB ⊆Q1× . . .×
Qn of the probability space for which setting the task voltages to
Vdd u guarantees that the deadlines will be met. For each task u, let
us define the following quantities:
• twc(u): The time it takes for the PE that runs u to execute the
worst-case demand for u (within QSUB) at the voltage setting Vdd u.
• tlatest(u): Assuming that all tasks v, starting with u until the end
of the period are run at a voltage setting of Vdd v, the latest time
that u has to start so that for all points in QSUB , the deadlines are
still met.
twc(u) and tlatest(u) are computed off-line for each task u using dist
and a reverse-topological traversal of the task graph. This compu-
tation takes linear time in the size of the task graph and the number
of points in QSUB . The off-line computed twc(u) and tlatest(u) are
also stored in the same table containing the fixed optimal voltage
setting Vdd u for each task.

Suppose that during a particular period, right before task u starts
execution, t units of time have elapsed since the beginning of the
period. We apply the following heuristic for updating the voltage
setting of task u. If ∆t = tlatest(u)− t > 0, lower the voltage for
task u such that the worst case load for u at the new voltage Vdd

′
u

takes twc(u)+∆t. Observe that the run-time computations required
for the online update is quite cheap: A few table look-ups, a few
arithmetic operations and a comparison.

We will refer to the version of our energy management scheme
that performs run-time adjustments to task voltage settings as
ONLN for the rest of the paper.

IV. EXPERIMENTS AND DISCUSSION

This section reports experimental results using our energy man-
agement schemes and comparisons with other approaches. The
following is a list of the approaches compared:
I: The energy management scheme in [3]. This scheme minimizes
energy consumption under the assumption of worst-case compu-
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TABLE I
COMPARISON OF ENERGY MANAGEMENT SCHEMES I, II, OFLN AND ONLN (RELAXED DEADLINE)

PCON = 0.90 PCON = 0.95 PCON = 0.99

Movie No: I II OFLN ONLN I II OFLN ONLN I II OFLN ONLN

1
E 857.3 153.2 100.0 98.1 830.5 146.2 100.0 96.7 762.4 129.0 100.0 91.4
Pr 1.000 1.000 0.905 0.905 1.000 1.000 0.947 0.947 1.000 1.000 0.989 0.989

2
E 859.8 156.3 100.0 98.2 837.4 151.5 100.0 97.3 774.2 135.2 100.0 92.8
Pr 1.000 1.000 0.775 0.775 1.000 1.000 0.879 0.879 1.000 1.000 0.985 0.985

3*
E 864.4 154.5 100.0 98.1 838.8 148.1 100.0 96.9 768.7 129.8 100.0 91.5
Pr 1.000 1.000 0.894 0.894 1.000 1.000 0.956 0.956 1.000 1.000 0.991 0.991

4
E 862.1 152.6 100.0 98.0 834.7 145.4 100.0 96.6 763.7 127.4 100.0 90.9
Pr 1.000 1.000 0.931 0.931 1.000 1.000 0.970 0.970 1.000 1.000 0.991 0.991

5
E 867.1 152.6 100.0 98.2 837.9 145.0 100.0 96.8 765.6 126.8 100.0 91.1
Pr 1.000 1.000 0.953 0.953 1.000 1.000 0.978 0.978 1.000 1.000 0.992 0.992

6*
E 851.9 152.9 100.0 98.0 824.5 145.5 100.0 96.6 756.2 128.0 100.0 91.0
Pr 1.000 1.000 0.923 0.923 1.000 1.000 0.954 0.954 1.000 1.000 0.988 0.988

7
E 861.1 153.2 100.0 97.9 834.4 146.4 100.0 96.5 764.3 128.5 100.0 91.0
Pr 1.000 1.000 0.919 0.919 1.000 1.000 0.964 0.964 1.000 1.000 0.993 0.993

8
E 864.2 151.4 100.0 98.0 835.2 143.9 100.0 96.5 763.2 126.0 100.0 90.5
Pr 1.000 1.000 0.960 0.960 1.000 1.000 0.983 0.983 1.000 1.000 0.997 0.997

9
E 856.5 158.1 100.0 98.3 830.7 150.6 100.0 97.1 762.6 132.0 100.0 91.9
Pr 1.000 1.000 0.894 0.894 1.000 1.000 0.939 0.939 1.000 1.000 0.978 0.978

10
E 853.5 155.8 100.0 98.3 828.5 149.2 100.0 97.1 761.0 131.2 100.0 91.9
Pr 1.000 1.000 0.871 0.871 1.000 1.000 0.941 0.941 1.000 1.000 0.994 0.994

Average
859.8 154.1 100.0 98.1 833.3 147.2 100.0 96.8 764.2 129.4 100.0 91.4

Energy

tational loads for tasks. The overall worst-case load for a task
graph is computed by summing the individual worst-case loads
for the tasks assuming independence. Hard timing constraints are
assumed.
II: The energy management scheme in [9]. Load variability in-
formation is used in the form of marginal load distributions for
tasks. Task loads are assumed to be independent of each other.
Energy minimization is done using a two-stage approach, with
off-line heuristics and run-time voltage selection. This approach
can handle soft timing constraints and provides probabilistic com-
pletion ratio guarantees under the assumption that task loads are
independent.
OFLN: Our energy management scheme that uses optimal fixed
voltage settings and performs only table look-ups during run-time,
with no on-line computations or adjustments to voltage settings.
Please see Section III-D for a detailed description.
ONLN: Our energy management scheme that augments OFLN with
run-time adjustments for further energy savings at the very small
run-time expense of additional table look-ups, a few arithmetic op-
erations and a comparison. Please see Section III-E for a detailed
description.
GOD: This is a non-causal, hypothetical energy management
scheme that is not implementable in reality. This scheme has a
priori knowledge of all task loads during an execution, and, for
selecting voltage settings, it has unlimited run-time computational
resources at no energy cost. Because task loads are different for
each period, before each individual period (each MPEG2 frame)
is executed, it solves a separate optimization problem on-line to
compute the optimal voltage settings for that period.
All of the schemes above were implemented and simulated in
MATLAB.

Table I presents the results of a set of experiments that contrasts
the essential features of the first four techniques listed above. Sev-
eral technicalities need to be explained before the results can be
interpreted properly.

The task decomposition, assignment and scheduling for the
tasks were done as described in Section II. All probability distribu-
tions and probabilistic parameters for all techniques were derived
from a set of eight 10-minute segments from a feature movie en-
coded in MPEG2. We call this set of movie segments the “training
set”. Movies marked by an asterisk (movies 3 and 6) were inten-
tionally left out of the training set in order to test how well the
stochastic model for MPEG2 can predict the characteristics of an

unknown movie.
In each set of columns marked by PCON = 0.90, PCON = 0.95,

and PCON = 0.99, all techniques that can make use of soft timing
constraints were given the target constraint satisfaction probability
of 0.90, 0.95 and 0.99, respectively. PCON = 0.99 models the “hard
deadline” case, while PCON = 0.9 and PCON = 0.95 are two different
choices for deadline miss tolerance.

For all techniques, the actual percentage of frames completed
successfully by the deadline differs from the target satisfaction
probability and is listed for each movie segment in a row marked
“PACH”. For II, the difference between the target and accomplished
completion rates is very pronounced and is because (i) II uses an
overly-conservative method to guarantee the satisfaction probabil-
ity, (ii) II ignores task correlations, and (iii) a dist obtained from
the training set may not model the load distribution of a particular
movie segment perfectly accurately. Factor (iii) applies to ONLN
and OFLN as well, but we have found that it causes only a minor
difference between the target and accomplished completion ratios.
This indicates that an application-specific (but movie independent)
stochastic model captures quite accurately the load demand of a
new, unknown movie. Movie 2 is an exception due to the fact that
its workload statistics differ from the training set’s. This exception
has inspired a refinement/generalization of the stochastic applica-
tion model to incorporate an “application state”, which is part of
our current/future work.

The energy consumption that each technique achieves for each
movie segment is listed in rows marked “Engy”. For ease of com-
parison, for each movie segment, the energy quantities are nor-
malized to the energy consumption achieved by OFLN. To make
the comparison fair, and not biased by the facts that II overshoots
the target completion probability and I does not make use of prob-
ability distributions, the total energy is computed using the same
subset of frames for each technique – those that OFLN finishes by
the deadline. Even after factoring out the overachievement of com-
pletion ratios by other techniques, OFLN and ONLN achieve signif-
icant energy savings over II and perform almost an order of mag-
nitude better than I. Average results over all movie segments are
presented in the last row of Table I.

It is noteworthy that ONLN and OFLN consume a lot less energy
than II and I even for PCON = 0.99, the “hard deadline” case. This
stems from the fact that the correlated worst-case computational
demand of the tasks in this application (more precisely, those on
the critical paths of the task graph) differs significantly from the
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TABLE II
COMPARISON OF OFLN AND ONLN (TIGHT DEADLINE)

PCON = 0.90 PCON = 0.95 PCON = 0.99

Movie No: OFLN ONLN OFLN ONLN OFLN ONLN

1
E 100.0 95.6 100.0 90.9 100.0 70.3
Pr 0.896 0.896 0.947 0.947 0.989 0.989

2
E 100.0 96.1 100.0 92.7 100.0 75.1
Pr 0.756 0.756 0.876 0.876 0.985 0.985

3*
E 100.0 95.9 100.0 91.3 100.0 70.5
Pr 0.905 0.905 0.959 0.959 0.991 0.991

4
E 100.0 95.4 100.0 90.3 100.0 68.3
Pr 0.936 0.936 0.971 0.971 0.991 0.991

5
E 100.0 95.9 100.0 90.5 100.0 68.4
Pr 0.957 0.957 0.979 0.979 0.992 0.992

6*
E 100.0 95.9 100.0 90.8 100.0 69.5
Pr 0.925 0.925 0.956 0.956 0.988 0.988

7
E 100.0 95.2 100.0 90.1 100.0 68.9
Pr 0.920 0.920 0.964 0.964 0.993 0.993

8
E 100.0 95.5 100.0 89.8 100.0 66.9
Pr 0.965 0.965 0.984 0.984 0.997 0.997

9
E 100.0 96.9 100.0 92.3 100.0 72.7
Pr 0.903 0.903 0.943 0.943 0.978 0.978

10
E 100.0 97.1 100.0 92.7 100.0 72.0
Pr 0.867 0.867 0.936 0.936 0.994 0.994

Average
100.0 95.9 100.0 91.1 100.0 70.3

Energy

demand computed by ignoring their correlations. OFLN and ONLN
are able to make use of the more accurate, correlated worst-case
load.

To contrast the peformance of energy management techniques
when the (soft) deadlines that are relatively “relaxed” vs. “tight”,
Table II presents the results of the same experiments in Table I
ran using a tighter deadline. We chose deadlines that intuitively
reflect the two following scenarios on a multi-processor system
running a number of applications concurrently: (i) all tasks can
be completed at full Vdd even if independent worst-case demand
was experienced by each MPEG2 task, and (ii) the multi-processor
system is experiencing high load, therefore, the resources that can
be allotted to MPEG2 tasks is only 80% of the (correlated) worst-
case time at full Vdd . The results in Table II are run with a deadline
that corresponds to (ii).

There are two noteworthy differences between the results in Ta-
ble I and Table II. First, no results with II are reported in Table II.
This is because II is not able to handle the tighter deadline although
it is achievable by OFLN and ONLN. II declares the required dead-
line as infeasible because of its assumption that task loads are inde-
pendent. Second, the on-line heuristic ONLN improves upon OFLN
quite a bit when the deadline is tight, while it only caused a modest
improvement upon OFLN when the deadline was relaxed.

Table III compares the results achieved by different techniques
for Movie 4 using a dist obtained from Movie 4 itself. The goal of
this experiment is to remove the inaccuracy in stochastic modeling
and to determine how close to GOD different techniques come if
they are given accurate, exact statistics. Results show that OFLN
performs better than II, and ONLN improves upon OFLN. There is
also indication that there is room for improvement using a more
refined stochastic model, which is part of our current work.

The following conclusions can be derived from the experimental
results presented in this section and the discussions above:
• The stochastic model we propose captures the essential char-
acteristics of applications, and is able to predict well actual task
workload distributions and correlations for other runs not con-
tained in the training data set.
• The stochastic model of the application serves succesfully as
the basis of energy optimization and timing constraint fulfillment
prediction, and our optimization scheme can properly exploit the
flexibility for a given value of required completion ratio.
• Energy management schemes taking both load variability and
correlations into account yield larger energy savings compared
with approaches operating under the worst-case execution time as-
sumptions or other schemes that assume independent task load dis-

TABLE III
COMPARISON OF II, OFLN, ONLN AND GOD

Prob II OFLN ONLN GOD
0.99 FAIL 100 65.81 52.00

0.95 100.65 100 86.40 71.84

0.90 108.23 100 92.32 76.60

tributions.
• OFLN, our energy management scheme using fixed optimal volt-
age settings computed off-line as the solution of an optimiza-
tion problem that takes correlations into account, without any
run-time adjustments and on-line computations, already achieves
larger energy savings compared with other approaches that ig-
nore correlations, even when these approaches perform run-time
adjustments and on-line computations. ONLN, with the addition
of very low-cost run-time adjustments to our energy management
scheme, achieves further, sometimes significant energy savings
over schemes that ignore correlations.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel off-line optimization formulation, associated
stochastic models, and an on-line heuristic management scheme
for the energy management of real-time applications on multipro-
cessor systems, with soft timing constraints. We demonstrated on a
streaming multimedia application that significant variabilities and
correlations exist for the computational demands of concurrent
tasks, and must be taken into account. Our results indicate that
there is significant potential in intelligent energy management that
can exploit application characteristics as captured by our stochas-
tic models.

In our future work, we plan to explore generalizations and ad-
ditions to the stochastic application models, energy management
scheme and the optimization formulation described in this work.
In particular, we will study formulations with stochastic models
that have state in order to capture correlations over time and the
input dependency of task workloads.
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