
Multithreaded Virtual-Memory-Enabled
Reconfigurable Hardware Accelerators

Miljan Vuletić #1, Paolo Ienne #2, Christopher Claus ∗3, and Walter Stechele ∗4

#Processor Architecture Laboratory
École Polytechnique Fédérale de Lausanne (EPFL)

CH-1015 Lausanne, Switzerland
1miljan.vuletic@epfl.ch

2paolo.ienne@epfl.ch
∗Institute for Integrated Circuits
Technische Universität München

Arcisstrasse 21, D-80290 München, Germany
3christopher.claus@tum.de
4walter.stechele@tum.de

Abstract— Although naturally belonging to the user process,
hardware parts of codesigned reconfigurable applications execute
outside of the operating system (OS) process: they have neither
unified memory abstraction with software nor system services
provided by the OS. This imposes limitations on hardware and
software interfacing, narrows available programming paradigms,
and affects application portability. Advanced programming con-
cepts, such as multithreading, usually demand additional activi-
ties on the programmer side, to perform memory transfers and
enforce memory consistency. In this paper, we introduce a system
layer (an OS extension relying on a system hardware extension)
that provides: (1) unified virtual memory, (2) platform-agnostic
interfacing, and (3) multithreaded execution, for hardware accel-
erators running within the same OS process with user software.
The system layer releases software programmer and hardware
designer from interfacing burdens and, still, achieves significant
speedups over software with only limited overheads. Virtual-
memory-enabled hardware accelerators benefit from all abstrac-
tions and services already available to software. To prove our
concept in practice and demonstrate the ease of programming, we
execute image processing and cryptography applications on re-
configurable systems-on-chip running GNU/Linux that supports
virtual memory for multithreaded hardware accelerators.

I. INTRODUCTION

User programs are rarely run bare on the underlying sys-
tem hardware. An abstraction layer created through system
software (e.g., an Operating System—OS) provides the exe-
cution environment, eases programming, increases portability,
improves security, and releases programmers from managing
and sharing hardware resources (i.e., processors, memories,
storage devices, I/O peripherals). There is no such support
for user hardware. In this paper, we describe the actions we
take for bringing the benefits of the OS abstractions to user
hardware as well.

A. Codesigned Applications in Software-centric Systems

We call codesigned hardware and software applications
those applications that have some of their parts running on
CPUs and the rest running in specialised hardware (i.e.,
hardware specifically designed to speed up and parallelise the

execution of some performance demanding tasks). Codesigned
applications mix two approaches of computation [1], [2]:
(1) temporal computation (scarce hardware resources such as
ALUs, shifters, multipliers are reused in time by the instruction
sequence being executed), and (2) spatial computation (abun-
dant hardware resources are wired and deployed in space—
silicon area—to fit more closely the nature of the application,
thus maximising the processing parallelism).

In codesigned and reconfigurable applications, the user-level
application code (program text) is not monolith but heteroge-
neous. The code consists of (1) software parts (sequences of
machine instructions typically generated by a compiler from
a text written in a high-level programming language) and (2)
hardware parts (hardwired or configurable networks of logic
gates typically generated by a synthesiser from a text written in
a hardware description language). Semantically, the software
and hardware parts of a program represent a unified entity
since they exhibit jointly some specified functionality and
operate on the same data. However, the abstraction provided
by the system to software and hardware parts of user applica-
tions is very different—user software does not recognise user
hardware as its peer.

The Y-chart in Figure 1 shows the different levels of
abstraction—provided and managed by the OS—visible to
software and hardware parts of a codesigned application run-
ning in a software-centric system. Each software-only applica-
tion enjoys the perfect memory abstraction through the virtual
memory support of system software and system hardware.
Through the interface of system calls, system hardware is com-
pletely abstracted, hidden, and protected by the OS. However,
these abstractions do not hold for codesigned applications: (1)
user software and user hardware (as shown in Figure 1) do
not share the memory address space—it is typically on the
application programmer and designer to arrange the communi-
cation and data transfers; (2) system services are only partially
available to user hardware—although programmers may use
software wrappers to call system services on behalf of the

FPT 20060-7803-9729-0/06/$20.00  2006 IEEE 197

System HW

System SW

Memory Abstraction

User SW User HW

OS View

Partial Support

Full Support

Fig. 1. Levels of abstraction for codesigned applications in a software-
centric system. User hardware lacks the abstractions usually available to user
software.

user hardware, it is difficult (or even impossible) for the user
hardware to use the result of a system service if there is no
memory abstraction present (as an example, think of dynamic
memory allocation); (3) for hardware-only applications (that
would not use CPU at all—at least at the user level—but
only the hardwired logic) there is neither memory abstraction
nor system call support altogether. Advanced programming
concepts, such as multithreading, usually demand additional
activities on the programmer side to perform memory trans-
fers and enforce memory consistency. Not only programming
transparency, but also portability of such applications across
different platforms is affected.

B. Our Contribution

Our goal is to provide the missing abstractions and bring
user software and user hardware to the same conceptual level.
For this purpose, we propose a unified OS process context for
heterogeneous-code programs. We delegate platform-specific
tasks to a system-level virtualisation layer, which allows us to
achieve seamless integration of software and hardware and
to increase the portability of codesigned applications. The
delegation of system specific tasks to the OS makes possible
extending the incomplete or missing abstraction layers from
Figure 1 to the full boxes in Figure 2 and simplifies enabling
simultaneous execution of user hardware and user software
within the same process.

Starting from a simple idea of unified virtual memory for
software and hardware parts of codesigned reconfigurable
applications, we contribute to the research community with
the first general evaluation of this concept in practice, on real
reconfigurable systems. We show that—even with the over-
heads of our mixed software-and-hardware approach—having
virtual-memory-enabled hardware accelerators is beneficial, in
the terms of simplified HW/SW interfacing and performance.
When building future systems for codesigned applications,
designers can immediately rely on (1) our results and (2) our
overhead analysis.

System HW

System SW

Memory Abstraction

User SW User HW

OS View

Fig. 2. User software and user hardware as peers in a system supporting
codesigned applications: both user software and user hardware have the same
abstractions available.

C. Paper Organisation

We show our motivation and discuss in more detail our
proposal in Section II. In Section III and Section IV, we
present the hardware and software architectures of our solution
for virtual memory management of multithreaded reconfig-
urable applications. We demonstrate our system in practice in
Section V. In Section VI, we present related work. Finally, we
conclude in Section VII.

II. MOTIVATION

Software programmers and hardware designers have to
solve the interfacing for a particular architecture they use. In
this section, we show some typical solutions for solving the
interfacing problem.

A. Typical Architectures and Their Programming

Figure 3 shows a hardware accelerator (user hardware)
directly accessing a local on-chip memory to perform the
computation. The user software, running on the CPU, has
a perfect, linear image of the memory provided by Memory
Management Unit (MMU) and the virtual memory manager
of the OS. On the contrary, the user hardware is directly
interfaced to the system hardware and generates physical
memory addresses for fast accessing of the local memory.
The programmer controls the accelerator and accesses its local
memory through a memory mapped region.

If the memory size is limited, the programmer is responsible
for partitioning data and scheduling data transfers. Figure 4
compares programming of the IDEA cryptography application
for its pure software and codesigned implementation. The
software-only version just invokes the encryption function by
passing the pointers to the input and output IDEA blocks.
On the other side, using the hardware accelerator demands
partitioning the data to fit the local memory, transferring the
data explicitly, and iterating until the computation is finished.
Although it is not a difficult task, it is quite burdensome and
demands programmer’s knowledge of the hardware memory
access pattern. In principle, the local memory serves as a
software managed cache or scratchpad.

198

CPU

MMU

Cache

System Bus

Main
Memory

Local
Memory

Hardware
Accelerator

Slave

Master

FPGA or ASIC

Working
Memory

Fig. 3. Typical hardware accelerator accessing local memory.

/* Pure software version, IDEA cryptography */
idea block A[n64], B[n64];
...
idea cipher sw(A, B, n64);

/* Typical HW accelerator version accessing local memory */
idea block *buff = mmap(0, sizeof(idea block), LBUFF PHYADDR);
...
data chunk = LBUFF SIZE / 2; data ptr = 0;
while (data ptr < n64 * sizeof(idea block)) {

memcpy(buff, A + data ptr, data chunk);

*IDEA CTRL REG = START;
while(*IDEA STATUS REG != FINISH);
*IDEA STATUS REG = INIT;
memcpy(B + data pt, buff + data chunk, data chunk);
data ptr += data chunk;

}

Fig. 4. Programming for the IDEA application: pure SW version (top) and
typical HW accelerator version accessing local memory (bottom).

Figure 5 shows another approach with a hardware accelera-
tor capable of initiating master transactions on the system bus
and directly accessing the main memory. The user software
is responsible for controlling the accelerator and passing
the physical addresses of a fixed memory region, previously
reserved by the OS. As user hardware generates physical
addresses of the main memory, an erroneous accelerator may
cause nondeterministic behaviour of the whole system.

With assumption that a large amount of the physical mem-
ory is available (which may not be always true, especially in
the embedded applications), the programming is made simpler
(as shown in Figure 6 for an image processing application):
there is no need to partition and copy data iteratively. However,
single accesses to the main memory are rather expensive.
To overcome this, the hardware designer has to manage
and implement burst accesses to the main memory, which
imposes creating buffers and local memory management on
the hardware side: the programmer’s burden from Figure 4 has
not disappeared but is just shifted to the hardware designer. In
the case of the contrast enhancement application (used later in
our experiments of Section V), the hardware designer would
have to manage four input and one output data buffers filled
and emptied by burst transfers, and synchronise them with the
accelerator.

CPU

MMU

Cache

System Bus

Main
Memory

Hardware
Accelerator

Master/Slave

Master

FPGA or ASIC

Working
Memory

Fig. 5. Typical hardware accelerator accessing main memory.

/* Pure software version */
unsigned char outimg[imgsize], inpimg[4][imgsize];
...
contrast enhancement sw(outimg, inpimg, winsize, imgsize);

/* Typical HW accelerator version accessing main memory */
unsigned char *resimg = mmap(0, imgsize, RES PHYADDR);
unsigned char *inpimg[i] = mmap(0, winsize,INPi PHYADDR);
...
memcpy(inpimg[i], camera out[frame i], winsize);

*CONTRAST CTRL REG = START;
while(*CONTRAST STATUS REG != FINISH);

*CONTRAST STATUS REG = INIT;
memcpy(outimg, resimg, winsize);

Fig. 6. Programming for the contrast enhancement application: pure software
version (top) and typical HW accelerator version accessing main memory
(bottom).

Figure 7 sketches possible execution timelines of the two
typical approaches. The overall Execution Time (ET) of the
approach with the local memory is the sum of the Copy Time
(CT) and pure Hardware execution Time (HT). The overall
execution time (ET) of the approach with the main memory
consists of hardware executions interleaved (or partially over-
lapped if bursts are supported) with master memory accesses.
If we assume identical computation cores of accelerators, their
pure HT times are the same: the overall performance depends
on the effectiveness of memory transfers.

It is debatable which of the two approaches is better: a pro-
grammer responsible for data transfers to the local memory can
overlap computation with data transfers (by dividing the local
memory in two halves—the first processed by the hardware
and the second used for copying) or use a DMA (although
this would mean descending from the user-level to system
programming) to speed up the process; a hardware designer
responsible for memory accesses to the main memory can use
burst accesses and hardware managed buffers to improve the
performance. What is clear is that in both cases the user-level
software and hardware are burdened with the kind of tasks that
are usually delegated to the system: pushing the management
of the virtual memory hierarchy from the programmer on the
virtual memory manager is a common solution to an analogous
problem in general-purpose computer architecture.

199

HT

Wait
User SW

User HW

start

Hardware Accelerator Accessing Local Memory

Hardware Accelerator Accessing Main Memory

CT(out)CT(in) CT(in)

User HW

User SW

end

...

...

...

...

?

HT

Wait
CT(out) CT(in)

HT

Wait
CT(out)

ET

Hardware Time Copy Time

Fig. 7. Execution timelines of typical hardware accelerators. Assuming iden-
tical computation cores, the overall performance depends on the effectiveness
of memory transfers.

CPU

MMU

Cache

System Bus

Main
Memory

Master

FPGA or ASIC

Hardware
Accelerator

WMU ...

Hardware
Accelerator

WMU
Mem.Coh

Bus Arbiter
Local

Memory
Local

Memory

...

Mem.Coh. Bus

Fig. 8. Multithreaded hardware accelerators capable of accessing virtual
memory of user process through user hardWare memory Management Units
(WMUs), in a similar way as user software does through MMUs.

B. Virtual-memory-enabled Hardware Accelerators

To enable transparent memory transfers and screen user soft-
ware and user hardware from the interfacing burden, we pro-
pose using hardware accelerators capable of accessing virtual
memory and sharing the address space with software. Figure 8
shows an architecture that allows multiple application-specific
hardware accelerators to run in the process context of their
peer software. Not only that it can simplify hardware/software
interfacing but it can allow hardware accelerators to benefit
(transparently and without any need for user intervention)
from spatial and temporal locality of memory accesses—
a well-known and largely-exploited concept from general-
purpose computing.

To achieve this goal, we need: (1) system hardware support
for user hardware invocation, virtual address translation, and
memory coherency, and (2) system software support for steer-
ing these activities and enabling the inter operation with user
software. We chose a mixed software and hardware scheme
that only slightly trades off performance for applicability to
a wide range of (reconfigurable) SoCs: there are no require-
ments regarding the system-bus capability to support memory
coherence protocols. In the following sections, we present

A
R

TLB

SRCR

HW
Accelerator

WMU
virt_addr
cp_din

cp_ctrl

ASICFPGA

portable platform-specific

Dual-ported
Local

Memory

XCHNG
RegFile

Prefetch
Support

DMA
cp_be
cp_dout

toward the system bus

phy_addr
cp_din

cp_be
cp_dout

Fig. 9. WMU structure and interfaces to user hardware, local memory, and
system.

details of our architecture, illustrate its benefits, and show
that performance is not dramatically affected, despite of the
inherent overhead of this scheme.

III. HARDWARE ARCHITECTURE

The translation from virtual to physical addresses is enabled
by: (1) Memory Management Unit (MMU) in the CPU case,
and (2) user hardWare memory Management Unit (WMU)
in the accelerator case. Apart the virtual address translation,
the WMU also defines a standardised hardware interface for
hardware accelerators, enables parameter exchange between
software and hardware, and provides a way for user hardware
to call back software functions.

A. WMU Interface

Figure 9 shows a detailed structure of the WMU, with its
interfaces toward the hardware accelerator and toward the
rest of the system. The WMU translates virtual addresses
demanded by the accelerator (similarly as the MMU does for
user software) to real addresses of the local memory divided
into pages. If a page is not present, the WMU generates an
interrupt to request the OS handling and stalls the hardware
accelerator (as the CPU may be stalled on a cache miss).

The central component of the WMU is a Translation Looka-
side Buffer (TLB), a standard component in general-purpose
CPUs to speed up address translation. Apart from the usual
control and status registers (CR, SR), there is an exchange
register file (for passing parameters between software and
hardware, and vice versa), prefetching support logic, and the
address register containing a faulty address—this register is
examined by the OS, in order to find a missing page in the
main memory. The OS either performs the page transfer or
uses a DMAfor this task.

B. Multithreading Support

Having multiple virtual-memory-enabled hardware acceler-
ators that work in parallel may violate data integrity. To enable
our hardware accelerators to share the coherent memory and
to enforce strict memory consistency, we extend the basic
WMUs with a simple, invalidation-based, mixed hardware-
and-software coherency protocol [3].

200

/* Virtual memory-enabled accelerator version */
void idea cipher cp(IDEA block *A, IDEA block *B, int n64) {

param.params no = 3;
param.flags = 0;
param.p[0] = A;
param.p[1] = B;
param.p[2] = n64;
FPGA EXECUTE(IDEA HW, ¶m);

}

Fig. 10. Library function for calling the IDEA hardware accelerator in our
system. Calling this function is to all practical purposes identical to the pure
software version and fully system-detail agnostic. The hardware accelerator
receives virtual memory pointers to the data to process.

Figure 8 shows multiple WMUs connected to an internal,
custom bus, separated from the system one. An arbiter acces-
sible and controllable by the OS through the system bus is
also connected to memory coherence bus. Each WMU keeps
track of states for the pages residing in the local memory and
snoops on the coherence bus (the protocol diagram is shown
in Figure 11). The OS-prevailing management for page-level
coherency can definitely have negative performance impacts,
but in the absence of heavy data sharing may be sufficient.
If the system bus supported the coherency for hardware
accelerators, our solution could imply less OS involvement
and provide finer granularity than the page-level one.

IV. OS EXTENSIONS

We extend the OS with a virtual memory manager for hard-
ware accelerators. It provides a standardised system services
to user software and manages the translation performed by the
WMU, similarly as the OS does with MMU.

A. Basic Architecture

The manager provides two functionalities: (1) a system call
to access and control the accelerator, and (2) management
functions to respond to WMU requests. The system call
provided to software designers is called FPGA_EXECUTE.
It passes data pointers or other parameters to the hardware,
initialises the WMU, launches the accelerator, and blocks the
calling thread, while not affecting the remaining SW threads
that execute in parallel. The accelerator processes the data
with no concerns about their location in memory—the WMU
translates generated addresses. Figure 10 shows the system
call in practice, for the IDEA application.

The local memory is logically organised in pages, as in
typical virtual memory systems. Data accessed by the ac-
celerator are mapped to these pages. The accelerator can
address any word of the user address space. However, having
the accesses go through the OS manager, memory protection
policies can be easily achieved (e.g., preventing the accelerator
to access forbidden memory regions). The OS keeps track
of the occupied pages and their state. The WMU signals a
page fault if the accelerator attempted to access an address not
currently in the local memory. The OS rearranges the current
mapping to the local memory in order to resolve the fault. It
may happen that all pages are in use; then, a page is selected
for eviction (different replacement policies are possible). If

Invalid

Exclusive

Modified

Shared

OS/Copy In

Invalidate

OS

OS

HWAcc Read/Write

WMU
HWAcc Write

HWAcc Read

HWAcc Read/Write

Read/Write Fault

Read/Write Fault

HWAcc Read

WMU/Invalidate
HWAcc Write

OS/Write Back
Read/Write Fault

OS/Copy In
HWAcc Read/Write

WMU

Stimulus

Responsible/Bus Action

Fig. 11. State diagram for page-level memory coherence protocol: OS
(software) and WMU (hardware) actions.

the page is dirty, the OS copies its contents back to the user-
space memory and the allocates the page for the missing data;
then, the OS transfers the missing data page from the user-
space memory and updates the WMU state; afterward, the OS
allows the WMU to restart translation and lets the accelerator
exit from the stalled state.

B. Supporting Multiple Hardware Accelerators

In the case of multiple hardware accelerators executing
in parallel, the manager keeps track of all their translation
data structures, manages the translation, and implements a
coherence protocol. On a page fault, the manager checks is the
page already present in any local memory. If true, for example,
it changes the WMU state of the page to SHARED and fulfills
the fault request by copying the data to the local memory
of the accelerator missing the page. In the same fashion, the
OS activities follow the memory coherency state transition
diagram, showed in Figure 11. As it services multiple WMUs,
it can be a potential bottleneck. For the moment, we use only
applications with a couple of hardware accelerators. Apart
from supporting multiple accelerators (each having a single
memory port), the manager can provide multiple memory ports
to a single hardware accelerator [4]; the applications that need
multiple paths to memory may benefit from this capability.

V. EXPERIMENTAL RESULTS

We have implemented the virtual memory manager for
hardware accelerators as an extension of the Linux/GNU OS
running on two different reconfigurable SoC platforms (one
based on an Altera Excalibur device—EPXA1 containing an
ARM processor running at 133MHz—and the other on a Xil-
inx Virtex-II Pro—XC2VP30 containing a PowerPC processor
running at 300MHz). We have designed the WMU in VHDL
and ported it to both platforms. The OS module and the
WMU support different local memory and page sizes. We have
measured several single hardware accelerators applications and
a multithreaded image processing application.

201

CT1

Exec - HT1

MTMT MT

 Wait

ST

RT

MT

Exec - HT2

CT2

CT1

Exec - HT1

MTMT MT

RT

MT

Exec - HT2

CT2 MT

RT

MTCT3
ST

MT

RT

MTCT4
ST

Exec - HT3 ...

...

...

...OS

User HW

OS

(a) No Prefetching

(b) Prefetching

User HW

Fig. 12. The OS activities related to User HW execution. The OS manages
translation data structures (Management Time—MT) and copies pages from/to
the user memory (Copy Time—CT). When finished, it invokes schedule()
and sleeps (Sleep Time—ST). The hardware accelerator executes (Hardware
Time—HT) until it finishes or tries accessing a page not present in the local
memory. In both cases, it waits for the OS action. The OS responds after some
time (Response Time—RT). Instead of sleeping, the OS can fetch in advance
pages that may be used by the accelerator. This results in uninterrupted
hardware execution.

A. Overhead Analysis

Compared to classic approaches, there are several sources of
overhead in our scheme [4]. The first one is due to the virtual
address translation: limitations of the FPGA technology and
design methodologies different than those of ASICs result in
a TLB which performs the translation in multiple clock cycles
(4–6 in our implementations). Thus, the Hardware execution
Time (HT) of virtual-memory-enabled accelerators is longer
than in the case of accessing the local memory by physical
addressing: HT (virtual) = t × HT (typical), where t > 1
is the translation overhead, proportional to the number of
memory accesses. It would be practically one, if the WMUs
were standard parts implemented in ASIC.

Figure 12a shows different time components during the ex-
ecution of a hardware accelerator. Having the OS responsible
for the translation management brings Manage Time (MT) and
Response Time (RT) as inherent overheads to the performance
equation. Sleep Time (ST = HT (virtual) + RT) represents
the time of the OS idleness, with respect to its actions on
behalf of the accelerator. If we assume the same data transfer
technique employed for a virtual-memory-enabled accelerator
and a typical one, the overall execution time (ET) of the
virtual-memory-enabled accelerator is: ET (virtual) = t ×
HT (typical)+ c×CT (typical)+RT +MT , where c > 1 is
the page-level granularity overhead. As shown in Figure 13,
in contrast to typical approaches, not necessarily all of the
transferred data are used by the accelerator. The effect is well-
known and studied in the OS and cache theories. To address
this, our WMU implementation and the OS extension support
different number of pages and sizes of the local memory.

Despite the incurred overhead, the involvement of system
software in execution steering allows dynamic optimisations
that can improve the performance. As Figure 12b shows,
instead of being idle, the OS can (with a lightweight hardware
support in the WMU to detect coprocessors memory access
patterns) monitor the execution, predict future memory ac-
cesses, and perform memory prefetching accordingly. For the
moment we use a simple, software-managed and hardware-

img.xim
g.

y

pos(x0,y0)

win.x w
in

.y

page start

page
end

...

memory area transfered
by the OS but not used
by the accelerator

page border

processing window

img.x, img.y - image size

win.x, win.y - window size

Fig. 13. Memory layout of an image. Processing a window region smaller
than the image size imposes the copying overhead due to the page-granularity.

supported, stream buffer-based technique [5], [6] that is com-
pletely transparent to the user.

B. Performance and Transparency

Figure 14 shows execution times for the IDEA cryptography
application running on the two different platforms (both with
the local memory of 16KB). Our intention is not to compare
the platforms, but to emphasize that virtual-memory-enabled
hardware accelerators can achieve significant performance
advantage over the pure software, and have the performance
comparable to the typical solution described in Section II-A,
Figures 3 and 4). To run experiments on the two different
platforms, we had to port the WMU hardware and to adapt
the Linux OS module, but there was no need to do any changes
to the accelerator HDL nor to the application C code. To get
the application running, it was sufficient just to recompile and
resynthesise its code.

Figure 15 and Figure 16 show executions times of two
image processing applications (contrast enhancement and edge
detection). The applications use accelerators directly accessing
the main memory (as explained in Section II-A). In the case of
virtual-memory-based accelerators, we use the local memory
of 64KB organised into 8 or 16 pages. The OS module uses
a DMA to transfer the pages to the local memory: the end
user benefits of the improved performance but is completely
screened of the enhanced system-level support.

The typical accelerator in Figure 15 does not implement
burst accesses to the memory (recall to Figure 7) which affects
it performance: despite the page-level granularity overhead, the
virtual-memory-enabled accelerators outperform the typical

IDEA Execution Times for Different Platform Types
(128KB Input Data Size)

0

10

20

30

40

50

60

ARM Altera Altera-NP Altera-P PowerPC Xilinx Xilinx-NP Xilinx-P

Platform Type

m
s

Pure SW

MT

ST

CT

277.17ms 125.17ms
no prefetching

 prefetching
 typical

Fig. 14. Two platforms (based on Altera or Xilinx devices) run the
same application. Results are shown for pure software (ARM, PowerPC),
typical (Altera, Xilinx), and virtual-memory-enabled accelerators, without
({Altera,Xilinx}-NP) and with prefetching ({Altera,Xilinx}-P) in the OS.

202

0

 10

 20

 30

 40

 50

 60

 70

 80

160x120 320x240 512x512

m
s

Window Size

Contrast Enhancement in SW and HW

138.3ms

Pure SW
Typical HW

MT
ST
CT }Virtual HW

Local memory 8 pages
(no prefetching)

Local memory 16 pages
(no prefetching)

Local memory 16 pages
(with prefetching)

Fig. 15. Execution times of contrast-enhancement application implemented
with pure software, typical hardware, and virtual memory-enabled hardware.

0

5

 10

 15

 20

 25

 30

160x120 320x240 500x500

m
s

Window Size

Edge Detection in SW and HW

56.8ms

Pure SW
Typical HW

MT
ST
CT }Virtual HW

Local memory 8 pages
(no prefetching)

Local memory 8 pages
(with prefetching)

Fig. 16. Execution times of edge-detection application implemented with
pure software, typical hardware, and virtual-memory-enabled hardware.

solution. More importantly, the benefit comes for free for the
hardware designer: there is no need to implement and manage
bursts.

The typical accelerator in Figure 16 implements burst
accesses to the memory and locally caches the transfered
data. It is significantly faster than the virtual-memory-enabled
accelerators for the smallest window size but, for larger
window sizes, the two approaches achieve closer performance.
Since the WMU memory interface is simpler (no burst and no
pipelining support), it provides an easy way—the system now
takes care of the data transfers—for a designer to get results
comparable with typical approaches.

C. Multithreaded HW Execution

We use a multithreaded image processing application to
demonstrate our virtual memory manager supporting simul-
taneous execution of multiple hardware accelerators. We
setup the application threads (shown in Figure 17) in a
producer/consumer chain that allows the contrast and edge
detection accelerators to work in parallel, on different image
windows slided in time. We compare the results obtained for
software-only version of the application and the codesigned
applications with typical or virtual-memory-enabled accelera-
tors.

Apart from the significant performance improvement ob-
tained by our approach, we stress the programming simplicity:
our threads operate on images stored on the heap, we pass to

HWSW

Virtual Memory

Camera
Capture

Contrast
Engine

HW

Edge
Engine

Fig. 17. Multithreaded edge detection. Producer/consumer chain of threads
synchronised by software semaphores.

our hardware memory pointers obtained by the malloc() func-
tion call; there is no need for software wrappers responsible
for memory transfers. Our approach can process more than 50
image windows per second with a large safety margin—other
applications can run in the system.

Our approach outperforms the typical solution and, even
more remarkably, this benefit comes along with our simple and
transparent design paradigm. The execution time of the typical
solution is dominated by slower contrast-detection accelerator
and, the lack of local memories also degrades the performance
by increasing the bus contention. Our virtualisation layer
hides from designers relatively complex design issues of burst
accesses and local memory management (either in software or
hardware) and, still, may offer better performance.

D. Area Overhead

Although the Altera device that we use is the smallest in its
family, the WMU area overhead is acceptable (not more than
one fifth of the EPXA1 resources). In the case of the Xilinx
device, the overhead per WMU is even smaller, with respect
to the larger programmable area available on the chip.

VI. RELATED WORK

In the field of reconfigurable computing, different rese-
archers [7], [8] have considered using the OS to manage FPGA
resources (i.e., reconfigurable chip area used for executing
different coprocessors); on our side, we use the OS to provide
transparent interfacing, unified memory address space and to

0

 200

 400

 600

 800

 1000

1 5 10 25 50

m
s

Number of 320x240 Windows

Pure SW and HW/SW Multithreaded Execution

1543ms 3075ms1036ms
Pure SW

Typical HW/SW
Virtual HW/SW

Fig. 18. Execution times for multithreaded versions of SW-only, typical, and
virtual-memory-based codesigned HW/SW applications.

203

enforce memory consistency between software and reconfig-
urable hardware running in the context of an OS process.
The two concepts are orthogonal and complementary: future
systems may have to implement both.

An advanced OS-based solution [9] introduces a Hard-
ware Abstraction Layer (HAL) responsible for communication
between software and hardware. Similarly to our virtuali-
sation layer, the HAL consists of software and hardware
components but, it assumes a specific communication scheme
based on message passing. An industrial solution [10] intro-
duces software (C language) and hardware (Handel-C lan-
guage) API supported by an intermediate system layer—Data
Streaming Manager (DSM)—providing platform-independent
and stream-based communication. Our scheme assumes no
specific API but allows both user software and multiple
hardware accelerators—being within the context of the same
OS process—to share any location of the practically-unlimited
virtual memory. Another industrial solution [11] has recently
employed HyperTransport [12], which is a noncoherent inter-
connection standard for processors and peripherals, for pro-
viding a close connection of an FPGA module with the CPU.
Plugging the module into a HyperTransport socket enables
hardware accelerators implemented in the FPGA to directly
access the main system memory. In contrast to our approach,
the solution demands user-space applications to use memory
maps and to manage the memory explicitly.

Some researchers [13] have considered system peripherals
(like network interfaces) capable of accessing virtual mem-
ory, in order to improve performance of application-specific
communication. We extend this approach, by proposing a
general scheme that distinguishes user hardware (having ex-
plicit semantical links with a particular user application) from
system hardware (such as mass storage, network interfaces,
reconfigurable logic, being implicitly available to all user
applications).

Different research groups have developed models of parallel
execution for reconfigurable computing systems [2]. Some
authors [14], for example, have proposed a hardware-centric
parallel programming model targeting mainly the design of
networking applications. Other authors [15], [16], in a work
closer to ours, have investigated system support for multi-
threaded reconfigurable applications; however, they concen-
trate on efficient implementation in hardware of thread syn-
chronisation primitives and rapid scheduling support. On our
side, we concentrate on the unified memory space and seam-
less integration of SW and HW, thus the two approaches are
complementary. Finally, a previous work [17] have introduced
virtual memory for hardware accelerators but with limitations
on parallel execution that we overcome in this paper.

VII. CONCLUSIONS

Our work is a first attempt to put hardware and software
threads on an equal standing. Within the context of the unified
OS process—for user software and user hardware—we provide
means for simultaneous execution and seamless interfacing of
software and hardware threads. We have proved with examples

on two real platforms that our approach offers straightforward
programming and hardware design of multithreaded code-
signed applications for an affordable cost. Future work should
address minimising the performance overheads and exploring
possibilities of runtime dynamic optimisations for applications
with different memory access patterns.

ACKNOWLEDGEMENTS

We acknowledge the help and support provided by Ingmar
Cramm, Sven Gowal, Chidamber Kulkarni, Florian Mueller,
Taranbir Singh, Jian Wang and the Xilinx University Program.

REFERENCES

[1] A. DeHon, “The density advantage of configurable computing,” Com-
puter, vol. 33, no. 4, pp. 41–49, Apr. 2000.

[2] M. Gokhale and P. S. Graham, Reconfigurable Computing: Accelerating
Computation with Field-Programmable Gate Arrays. Berlin: Springer,
2005.

[3] J. Protić, M. Tomasević, and V. Milutinović, Eds., Distributed Shared
Memory: Concepts and Systems. Los Alamitos, Calif.: IEEE Computer
Society Press, 1997.

[4] M. Vuletić, “Unifying software and hardware of multithreaded recon-
figurable applications within operating system processes,” Ph.D. Thesis
no. 3626, École Polytechnique Fédérale de Lausanne, Lausanne, 2006.

[5] N. P. Jouppi, “Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch buffers,” in
Proceedings of the 17th Annual International Symposium on Computer
Architecture, Seattle, Wash., May 1990, pp. 364–73.

[6] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a
secondary cache replacement,” in Proceedings of the 21st Annual
International Symposium on Computer Architecture, Chicago, Ill., Apr.
1994, pp. 24–33.

[7] H. Walder and M. Platzner, “Online scheduling for block-partitioned
reconfigurable devices,” in Proceedings of the Design, Automation and
Test in Europe Conference and Exhibition, Munich, Mar. 2003, pp.
10 290–95.

[8] M. Dales, “Managing a reconfigurable processor in a general purpose
workstation environment,” in Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, Munich, Mar. 2003, pp.
10 980–85.

[9] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins,
“Designing an operating system for a heterogeneous reconfigurable
SoC,” in Reconfigurable Architectures Workshop (RAW), Proceedings of
the International Parallel and Distributed Processing Symposium, Paris,
June 2003.

[10] C. Sullivan and M. Saini, “Software-compiled system design optimizes
Xilinx programmable systems,” Xcell Journal, no. 46, pp. 32–37, Sum-
mer 2003.

[11] “XD1000 FPGA coprocessor module for socket 940,”
http://www.xtremedatainc.com/, 2006, XtremeData Inc.

[12] HyperTransport 3.0 Specification, http://www.hypertransport.org, Hy-
perTransport Consortium, 2006.

[13] S. S. Mukherjee and M. D. Hill, “Making network interfaces less
peripheral,” Computer, vol. 31, no. 10, pp. 70–6, Oct. 1998.

[14] G. Brebner, P. James-Roxby, and C. Kulkarni, “Hyper-programmable ar-
chitecture for adaptable networked systems,” in Proceedings of the 15th
International Conference on Application-specific Systems, Architectures
and Processors, Galveston, Tex., Sept. 2004, pp. 328–38.

[15] D. Andrews, D. Niehaus, R. Jidin, M. Finley, W. Peck, M. Frisbie,
J. Ortiz, and E. Komp, “Programming models for hyprid FPGA-CPU
computational components: A missing link,” IEEE Micro, vol. 24, no. 4,
pp. 42–53, July 2004.

[16] E. Anderson, J. Agron, W. Peck, J. Stevens, F. Baijot, E. Komp,
and D. Andrews, “Enabling a uniform programming model across
the software/hardware boundary,” in Proceedings of the 14th IEEE
Symposium on Field-Programmable Custom Computing Machines, Napa
Valley, Calif., Apr. 2006.

[17] M. Vuletić, L. Pozzi, and P. Ienne, “Virtual memory window for
application-specific reconfigurable coprocessors,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. VLSI-14, no. 8, pp.
910–15, Aug. 2006.

204

