
910 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006

methods have their own strengths: net-driven method yields better uti-
lization of resources while path-driven method results in better timing
results. In addition, the net/path-driven method achieves good tradeoff
between resource utilization and timing results.

Table IV studies the impact of various cost factors used in our
SA-based refinement. The first three algorithms take only hgsw; mse,
or xlp objective into account, whereas the forth algorithm uses a com-
bination of all three objectives and is selected as baseline. First, we
obtain 3% more hgswsaving with hgsw� onlyalgorithm compared to
the baseline. However, this saving comes with 438% and 39% increase
on mse and xlp cost. Second, the mse saving with mse � only

algorithm compared to the baseline is almost negligible while the
hgsw and xlp cost increase by 16% and 28%, respectively. Finally, the
xlp saving with xlp�only algorithm compared to the baseline is 15%
while the hgsw and mse cost increase by 13% and 64%, respectively.
These results reveal that there may be a little improvement for a certain
metric if SA focuses only on that metric. However, these individual
savings come with huge degradation on other metrics that are ignored.
Thus, the combined cost function proves to be the best approach.

VII. CONCLUSION

This paper focused on making our large-scale floating-gate-based
FPAA technology more accessible by providing the first physical syn-
thesis tool. Our analog CAD tool automates the placement of analog
circuit components on a target large-scale FPAA. Our placement algo-
rithm incorporates a performance metric that takes into account signal
degradation and circuit parasitics under various device-related con-
straints. Our experimental results demonstrated the effectiveness of our
new approaches for solving this new problem.

REFERENCES

[1] T. Hall, C. Twigg, P. Hasler, and D. Anderson, “Developing large-scale
field-programmable analog arrays,” in Proc. Parallel Distrib. Process.
Symp., 2004, pp. 26–30.

[2] P. Hasler, C. Diorio, B. A. Minch, and C. A. Mead, “Single transistor
learning synapses,” in Advances in Neural Information Processing Sys-
tems 7. Cambridge, MA: MIT Press, 1995, pp. 817–824.

[3] J. D. Gray, C. M. Twigg, D. N. Abramson, and P. Hasler, “Charac-
teristics and programming of floating-gate pFET switches in an FPAA
crossbar network,” in Proc. IEEE Int. Symp. Circuits Syst., 2005, pp.
23–26.

[4] H. Wang and S. Vrudhula, “Behavioral synthesis of field programmable
analog array circuits,” ACM Trans. Design Autom. Electron. Syst., pp.
563–604, 2002.

[5] S. Ganesan and R. Vemuri, “Behavioral partitioning in the synthesis
of mixed analog-digital systems,” in Proc. ACM Design Autom. Conf.,
2001, pp. 133–138.

[6] J. Cong and Y. Ding, “Flowmap: An optimal technology mapping al-
gorithm for delay optimization in lookup-table based FPGA designs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., pp. 1–12,
1994.

[7] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in Proc. Int. Symp. Field Programmable Gate
Arrays, 1997, pp. 213–222.

[8] M. Pedram, B. Nobandegani, and B. Preas, “Design and analysis of seg-
mented routing channels for row-based FPGAs,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., pp. 1266–1274, 1994.

[9] B. Cochrun and A. Grabel, “A method for the determination of the
transfer function of the electronic circuits,” IEEE Trans. Circuit
Theory, vol. CT-20, no. 1, pp. 16–20, Jan. 1973.

[10] Y. Linde, A. Buzo, and R. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. COM-28, no. 1, pp. 84–95, Jan.
1980.

[11] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hy-
pergraph partitioning: Application in VLSI domain,” in Proc. ACM De-
sign Autom. Conf., 1997, pp. 526–529.

Virtual Memory Window for Application-Specific
Reconfigurable Coprocessors

Miljan Vuletić, Laura Pozzi, and Paolo Ienne

Abstract— The complexity of hardware/software (HW/SW) interfacing
and the lack of portability across different platforms, restrain the wide-
spread use of reconfigurable accelerators and limit the designer produc-
tivity. Furthermore, communication between SW and HW parts of code-
signed applications are typically exposed to SW programmers and HW de-
signers. In this work, we introduce a virtualization layer that allows recon-
figurable application-specific coprocessors to access the user-space virtual
memory and share the memory address space with user applications. The
layer, consisting of an operating system (OS) extension and a HW compo-
nent, shifts the burden of moving data between processor and coprocessor
from the programmer to the OS, lowers the complexity of interfacing, and
hides physical details of the system. Not only does the virtualization layer
enhance programming abstraction and portability, but it also performs
runtime optimizations: by predicting future memory accesses and specu-
latively prefetching data, the virtualization layer improves the coprocessor
execution—applications achieve better performance without any user in-
tervention. We use two different reconfigurable system-on-chip (SoC) run-
ning Linux and codesigned applications to prove the viability of our con-
cept. The applications run faster than their SW versions, and the overhead
due to the virtualisation is limited. Dynamic prefetching in the virtualisa-
tion layer further reduces the abstraction overhead.

Index Terms—Codesign, coprocessors, dynamic prefetching, operating
system (OS), reconfigurable computing.

I. INTRODUCTION

Blending two computational paradigms (temporal computation on
standard processors and spatial computation in reconfigurable hard-
ware) supported by reconfigurable system-on-chip (SoC) devices [1],
[2] is a well-known way to increase performance: critical code sections
or entire software functions are mapped to reconfigurable hardware
accelerators. When it comes to interfacing the application-specific
coprocessors with the rest of the reconfigurable SoC: 1) programmers
must be aware of data partitioning and memory transfers and 2) hard-
ware designers have to account for different architectural details of
the host platform. The memory transfers can particularly burden the
programmer, if shared memory accessible by processor and field-
programmable gate array (FPGA) is smaller than a dataset to process.

We introduce an abstraction layer for virtualization of hardware/
software (HW/SW) interfacing. A lightweight platform-specific hard-
ware and an operating system (OS) extension reduce the burden of
SW programmers and HW designers: 1) programmers can write soft-
ware that invokes reconfigurable coprocessors as if they were soft-
ware functions—there is no need for explicit data transfers, passing
memory pointers is just enough and 2) designers can write coproces-
sors that access the user virtual memory through a virtual memory
window—there are neither physical constraints on addressing nor on
the interface memory size. Our contribution shifts the burden of moving
data between processor and coprocessor from the programmer to the
OS. Codesigned applications become fully platform independent with
only a limited penalty.

Manuscript received April 23, 2004; revised January 23, 2006.
M. Vuleti and P. Ienne are with the Ecole Polytechnique Fédérale de Lau-

sanne (EPFL), School of Computer and Communication Sciences, Lausanne
CH-1015, Switzerland (e-mail: miljan.vuletic@epfl.ch; paolo.ienne@epfl.ch).

L. Pozzi was with the Ecole Polytechnique Fédérale de Lausanne (EPFL),
School of Computer and Communication Sciences, Lausanne CH-1015,
Switzerland. She is now with the Faculty of Informatics, University of Lugano,
Lugano CH-6900, Switzerland (e-mail: laura.pozzi@unisi.ch).

Digital Object Identifier 10.1109/TVLSI.2006.878481

1063-8210/$20.00 © 2006 IEEE

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006 911

II. RELATED WORK

Some researchers [3] consider using the OS to manage FPGA
resources (i.e., reconfigurable chip area used for executing different
coprocessors); on our side, we use the OS to manage interfacing re-
sources. The two concepts are orthogonal and complementary—future
systems may have to implement solutions for both.

Several approaches exist that introduce OS extensions supporting
user-controlled interfacing of reconfigurable hardware. In contrast
to our approach, where the memory transfers are done implicitly
by the OS, a typical solution [4] exposes the communication to the
programmer through a limited-size interface memory mapped to the
user space. An advanced OS-based solution [5] introduces a hardware
abstraction layer (HAL) responsible for communication between SW
and HW. Unlike our virtual memory approach, it assumes a specific
communication scheme based on message passing: HW tasks generate
no memory addresses but send messages through a message-passing
interface; on the SW side, tasks rely on the message-passing applica-
tion programming interface (API). Our scheme assumes no specific
API, but allows both user SW and user HW to share any location of
practically unlimited virtual memory.

An industrial solution [6] introduces a SW (C language) and
HW (Handel-C language) API supported by an intermediate system
layer—data streaming manager (DSM). The DSM provides plat-
form-independent and stream-oriented communication between SW
and HW. The approach demands using API-specific data types (the
DSM buffers) and communication primitives (the DSM port READ and
WRITE operations). The data transfers are exposed to the programmer
and the coprocessor memory accesses are limited to the sequential
access pattern. Our approach has no such limitation: the programmer
is screened from data transfers and the HW can generate any memory
access pattern.

III. VMW

The virtual memory window (VMW) addresses the problem of non-
standard HW/SW interfacing [7] by reusing a simple and well-known
concept of virtual memory. The VMW simplifies the programming par-
adigm by enabling the coprocessors to share the virtual memory ad-
dress space with user applications.

Programmers of a computing platform running an OS are abstracted
from the characteristics of the physical memory system [8]. The ad-
dresses known to the programmer are virtual in that they describe a
memory system with no relation to the real one. The virtual memory
manager (VMM) of the OS supports the programmer’s illusion and
is assisted in HW by the memory management unit (MMU). The ap-
proach typically results in suboptimal performance but the advantages
are overwhelming: 1) programming is made simpler and 2) code be-
comes more portable.

We aim to extend these advantages to application-specific coproces-
sors. Our goal is to have an application (in a high-level language—e.g.,
C or C++) and the corresponding coprocessor (in a HW description lan-
guage—e.g., VHDL or Verilog) sharing the same virtual memory ad-
dress space. This would provide transparent communication between
the coprocessor and the user-space software, and portability of recon-
figurable applications. The programmer of a reconfigurable applica-
tion should use coprocessors without any knowledge of their memory
access scheme. Similarly, the coprocessor designer should follow the
same abstraction and generate abstract addresses rather than specifying
physical addresses.

A. Basic Concepts

To allow the unified virtual memory between SW and HW, a local
memory accessible directly by the FPGA is used as a coprocessor’s
VMW. Two elements forming the virtualization layer are added to the

Fig. 1. VMW for reconfigurable coprocessors. Thanks to a hardware transla-
tion engine (WMU) and an OS extension (VMW manager), the coprocessor can
share the address space with the user application and access the user-space vir-
tual memory.

Fig. 2. Motivational example. Different invocations of the IDEA function: (a)
pure SW version and (b) typical coprocessor version.

basic system: 1) window management unit (WMU), a HW device sim-
ilar to a classic MMU that performs the translation from virtual to phys-
ical addresses and 2) VMW manager, an OS part similar to the VMM
that steers the translation and maintains data transfers (from/to the main
memory) transparently to the user application.

Fig. 1 shows how the VMW integrates to a virtual memory system.
A user application running on the main processor and its corresponding
coprocessor belong to the same OS process and have the same virtual
address space. However, the coprocessor accesses the virtual memory
through a different translation path (through the WMU and the window
memory managed by the VMW manager). While the coprocessor is
accessing the window memory through the WMU, the main processor
may run any other runnable process scheduled by the OS. The OS in-
vokes the VMW manager only when the address requested by the co-
processor is not present in the window memory: the WMU reports this
event by raising an interrupt.

Benefits of unifying the memory pictures from the main processor
and the coprocessor side are as follows. 1) Programming SW is made
simpler—calling a coprocessor from a user application is as simple
as a function call, no need for explicit data communication. 2) De-
signing HW is free of interface memory constraints (except complying
to the WMU interface)—the coprocessor can access data anywhere in
the user space, available virtual memory is practically unlimited. 3)
Application SW and accelerator HW are made portable—hiding plat-
form-related details behind the VMW manager and the WMU provides
platform independence.

B. Motivating Example

Fig. 2 shows simplified code excerpts of the IDEA cryptography ap-
plication that invokes either a SW function (a) or a HW coprocessor
(b) to encrypt/decrypt an input vector A of 64-bit elements and store
the results into an output vector B. In the case of the typical copro-
cessor version, the programmer has to take care of cumbersome details

912 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006

Fig. 3. Coprocessor connected through a WMU. The WMU translates virtual
(coprocessor generated) to physical addresses of the on-chip memory.

(a similar task burdens the HW designer): 1) system-specific address
calculation (platform related) and 2) relatively straightforward but bur-
densome data partitioning and transfers (coprocessor related). On the
other side, the VMW-based programming completely resembles the
pure SW version (as shown in Section V-B and Fig. 5): a clean and
transparent interface to the HW. Not only that it hides memory trans-
fers and data partitioning from the programmer, but it also assumes no
particular memory access pattern of the coprocessor. The VMW-based
system can process dynamically allocated data (e.g., objects scattered
on the heap) without any additional burden on the programmer’s side.

IV. WMU

The WMU decouples the design of application-specific coprocessors
from the host platform. It is a platform-specific element which is ported
once per reconfigurable SoC. As the MMU does on the CPU side, the
WMU translates virtual addresses demanded by the coprocessor. The
WMU also defines a standardised hardware interface for the VMW-
based coprocessors. It can support multiple operation modes, i.e., dif-
ferent page sizes and the number of pages of the window memory.

A. WMU Structure

Fig. 3 shows how a VMW-based coprocessor is interconnected to
the WMU. The standard interface consists of virtual address lines
(CP VADDR), data lines (CP DIN and CP DOUT), and control lines
(CP CONTROL). Platform-specific signals connect the WMU with the
rest of the system. The presence of the translation lookaside buffer
(TLB) inside the WMU emphasizes its similarity with a conventional
MMU [8]. The TLB translates the upper part of the coprocessor ad-
dress (most significant bits) to a physical page number of the window
memory. Due to limitations of the FPGA technology and design
methodologies different than in the case of ASICs, our TLB design
performs the translation in multiple cycles.

If the coprocessor tries accessing the data which is not present in
the local memory, the WMU generates an interrupt and requests the
OS handling. While the coprocessor is stalled, the VMW manager: 1)
reads the address register (AR) to find out the address that generated the
fault; 2) transfers the corresponding page from the main memory and
updates the TLB state; and 3) resumes the coprocessor. The OS pro-
vides transparent dynamic allocation of memory resources (i.e., shared
or dual-port memory) between processor and coprocessor: the pro-
grammer can avoid explicit data movements.

B. Coprocessors for WMU

The HDL ports of the VMW-based coprocessor module are prede-
fined by the WMU HW interface (shown in Fig. 3). The HW designer
writes the coprocessors HDL-code: 1) to fetch the function parameters
(e.g., pointers, data sizes, constants); 2) to access data using virtual
memory addresses and perform the computation; and 3) to return back

Fig. 4. Basic and extended VMW manager architectures.

to the SW. The HDL code of the VMW-based coprocessor [9]: 1) does
not embody any detail related to the memory interfacing; 2) has no limit
on the size of the processed data; and 3) is not concerned about phys-
ical data location.

V. VMW MANAGER

The VMW manager provides two functionalities: 1) a system call
to access and control the coprocessor and 2) management functions to
respond to WMU requests (similarly as the VMM does). The system
service is called FPGA EXECUTE. It passes data pointers and parameters
to the HW, initializes the WMU, launches the coprocessor, and puts the
calling process in sleep mode (avoiding consistency problems of simul-
taneous accesses to multiple data copies). The SW designer can pass
data references to the coprocessor, without any particular preparation;
the HW designer implements a coprocessor having in mind no specific
data addresses—it fetches all necessary references through a standard-
ized initialization protocol.

A. Manager Architecture

The window memory is logically organized in pages, as in typical
virtual memory systems. The data accessed by the coprocessor are
mapped to these pages. The OS keeps track of the occupied pages and
the corresponding objects. Through memory protection policies, it pre-
vents the coprocessor to access forbidden memory regions.

Fig. 4(a) shows the basic architecture of the VMW interrupt han-
dler. There are two possible requests: 1) page fault—the coprocessor
attempted an access of an address not currently in the window memory
and 2) end of operation—the coprocessor signals the end of opera-
tion to the main processor and the manager then ensures that the user
memory reflects correctly the state of the window memory. For a page
fault, the OS rearranges the current mapping to the window memory
and possibly selects a page for eviction—if dirty, its contents are copied
back to the user-space memory; the OS schedules the missing page for
transfer (done by the Fetcher), updates the WMU state and resumes
the coprocessor. For an end of operation, the VMW manager copies
back to the user space all dirty pages currently residing in the window
memory and transfers the execution back to application SW.

B. Example Programming for VMW

For calling the VMW-based IDEA coprocessor, the programmer
simply replaces the original SW function in the code with the call to
a VMW library function (Fig. 5). In contrast to the typical approach
[Fig. 2(b)], our approach is as simple and elegant as the original func-
tion call: the library function hides all memory interfacing details. Just
before the call to the OS service, an array of the param data structure
is used to pass parameters and data pointers to the coprocessor. The
VMW manager copies the data dynamically to/from the window
memory as requested/produced by the coprocessor, and everything is
completely hidden from the SW programmer.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006 913

Fig. 5. Library function for calling the VMW-based coprocessor version.
Calling this function is to all practical purposes identical to the pure SW version
and fully system-detail agnostic.

Fig. 6. The OS module (OS) activities related to coprocessor execution (CP).
(a) The OS manages VMW data structures (MT) and copies pages from/to user
memory (CT). When finished, it sleeps (ST). The coprocessor executes (HT)
until it finishes or misses a page. In both cases, it waits for the OS action. The
OS responds after some time (RT). (b) Instead of sleeping, the VMW can fetch,
in advance, pages that may be used by the coprocessor. This may result in un-
interrupted coprocessor execution.

VI. DYNAMIC PREFETCHING

Although it is intuitively expected that the additional layer brings
overheads, it is shown here that it can also lower the execution time by
taking advantage of runtime information, without any changes in the
application and coprocessor code. Since the main processor can be idle
during the coprocessor busy time, we explore the scenario where the
idle time is invested into anticipating and supporting future coprocessor
execution: with simple HW support, the OS can predict coprocessor
memory accesses, schedule prefetches, and, thus, decrease memory
communication latency.

The sequence of the OS events during a VMW-based coprocessor
execution is shown in Fig. 6. Assuming a large spatial locality of co-
processor memory accesses (e.g., stream oriented processing), it can
be seen in Fig. 6(a) that the OS module sleeps for a significant amount
of time. Once the management is finished, the VMW manager goes
to sleep waiting for future coprocessor requests. If the VMW man-
ager were active instead of being idle, it could minimize the number
of page faults. Fig. 6(b) shows HW execution time overlapped with
the VMW manager that predicts future accesses. Based on informa-
tion provided by the WMU, it schedules prefetch-based loads of vir-
tual memory pages. For correct predictions, the coprocessor generates
no faults: the OS activity completely hides the memory communication
latency without any action on the user side.

A. HW and SW Extensions

We introduce a simple extension—two 32-bit registers and few tens
of logic gates—to the WMU that supports the detection of a page ac-
cess. Fig. 7 contains the internal organization of the WMU related to ad-
dress translation. If there is a match in the content addressable memory
(CAM), the 1-hot bit lines are used to set the appropriate bit in the ac-
cess indicator register (AIR). If the VMW manager previously set the
corresponding bit in the access monitor register (AMR), the WMU will
report the page access event by raising an access interrupt—the copro-
cessor accessed a page for which the OS requested the reporting. While
the access interrupt is being handled, there is no need to stop the co-
processor: the VMW manager and the coprocessor run in parallel.

Fig. 7. Page access detection. On a hit in the CAM, 1-hot bit lines will set the
corresponding bit in the AIR register. If the mask in the AMR register allows
the access, an interrupt is raised.

Fig. 8. IDEA execution times.

Fig. 9. ADPCM decoder execution times.

We extend the VMW manager [Fig. 4(a)] to support the prediction
of future memory accesses and speculative prefetching [Fig. 4(b)]. The
three main design components of the extended VMW module [10] are:
1) initialization and interrupt handling; 2) prediction of future accesses
(Predictor); and 3) fetching of pages from main memory (Fetcher).
For a fault interrupt, after scheduling a transfer of a fault page, the
OS invokes the predictor module which predicts future accesses and
schedules their transfers. For an access interrupt, the OS again invokes
the predictor module to validate or confute its past predictions, and
schedule future transfers. The predictor uses a simple but effective
prefetching policy [10] motivated by the previous work on stream-
buffers for cache memories [11], [12].

VII. EXPERIMENTAL RESULTS

We have implemented two different VMW systems—based on
Altera (Excalibur EPXA1 [1], with a 133-MHz ARM processor)
and Xilinx (Virtex-II Pro XC2VP30 [2], with a 300-MHz PowerPC
processor) reconfigurable devices—with several applications running
on them (the IDEA cryptography and the ADPCM voice decoder).
We have developed the VMW manager as a Linux kernel module
and ported it to both platforms. The WMU is designed in VHDL to
be synthesised onto FPGA together with a coprocessor. Due to the
limitations of the FPGA technology, the translation is performed in
multiple cycles (4–6 cycles depending on the implementation).

A. Typical Data Sizes

Figs. 8 and 9 show execution times of the IDEA and ADPCM ap-
plications (running on the Altera-based board) for typical input data

914 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006

Fig. 10. Speedup (relative to pure SW) for small input data sizes.

Fig. 11. ADPCM decoder performance for different number of VMW pages.

sizes. The VMW-based versions (with and without prefetching) of the
applications achieve significant speedup (especially with prefetching)
compared to the SW cases, while the overhead is limited compared to
the typical coprocessors.

Three components are measured for the typical coprocessor: 1) copy
time (CT)—time to copy the exact amount of data for processing; 2)
hardware time (HT)—time to perform the computation in hardware;
and 3) manage time (MT)—time to update the pointers and iterate until
completion. Also, three components are measured for the VMW-based
coprocessors (recall Fig. 6). The sleep time consists of the HT (for
executing a VMW-based coprocessor) plus the OS response time [not
present when programming the typical coprocessor like in Fig. 2(b)].

When compared to the typical coprocessors, sources of the overhead
are threefold: 1) costs of managing higher abstraction (represented by
MT—goes up to 15% of the total execution time, which is acceptable);
2) current inefficient implementation of the WMU in FPGA (repre-
sented by the difference between HW execution times of the typical
and VMW-based coprocessors—about 20% and 30% longer execution
in the VMW case; fortunately, this overhead can be reduced by imple-
menting the WMU as a standard VLSI part on a SoC—exactly as it is
the case with the MMU); and 3) copy overhead for enforcing memory
consistency (represented by the difference between CTs of the typical
and VMW-based coprocessors and caused by the page-level memory
granularity—discussed in Section VII-B).

Figs. 8 and 9 also show that in the presence of a dynamic optimiza-
tion like prefetching (described in Section VI), execution times are
shortened and the obtained speedup is increased. Prefetching reduces
the number of page faults by allowing overlapping of processor
and coprocessor execution. As indicated in Fig. 6, the sleep time
(ST) decreases: the OS module handles access requests in parallel
with the coprocessor execution. Counterintuitively, the management
time slightly decreases: the number of fault-originated interrupts is
dramatically lower (Fig. 12).

B. Small Input Data

Although not likely in practice, using the accelerated applications
with small input data sizes gives us better insight about the overhead of
the page-level memory granularity. While the typical solution always

Fig. 12. ADPCM decoder faults with (P) and without (NP) prefetching.

TABLE I
WMU AREA OVERHEAD. USAGE OF FPGA RESOURCES

(i.e., LOGIC CELLS—LC, AND MEMORY BLOCKS—MEM)
ARE SHOWN FOR THE ALTERA EPXA1 DEVICE (IN NUMBER OF UNITS

AND PERCENTAGE OF THE DEVICE OCCUPANCY). THE IDEA AND ADPCM
COLUMNS SHOW WHAT FRACTION OF THE OVERALL ACCELERATOR

DESIGNS (VMW-BASED) IS OCCUPIED BY THE WMU

copies the exact amount of data to process, the virtualisation layer al-
ways copies entire window memory pages. Fig. 10 compares speedups
(for the Altera-based board) of the typical and VMW-based IDEA co-
processors, in the case of small input data sizes. While the typical co-
processor achieves speedups quite early, the VMW-based solution lags
behind: the typical solution has no overhead of copying entire pages
into local memory.

C. Different Number of Memory Pages

Having multiple WMU operation modes allows the VMW to fit co-
processors with different memory access patterns. Except for some ex-
treme values, changing the WMU operating modes does not influence
performance dramatically (as Fig. 11 shows for the ADPCM applica-
tion running on the Altera-based board).

Increasing the number of pages (i.e., the fixed-size window memory
is divided into smaller pages) for the same input data size increases
the number of faults (faults NP in Fig. 12). However, prefetching in
the VMW keeps the number of faults (faults P) low and constant (ex-
cept for only two VMW pages, when memory trashing appears—also
visible in Fig. 11). Having smaller page sizes (i.e., window memory
contains more pages), MT and CT intervals become comparable to the
HW execution intervals: late faults—lest costly than regular ones—ap-
pear (a fault is “late” when the WMU reports a fault while the missing
page is already being prefetched by the VMW).

D. Area Overhead

Table I shows the complexity of the WMU in terms of occupied
FPGA resources (logic cells and memory blocks), for the Altera Ex-
calibur device (EPXA1). The overhead does not include cost of the in-
terface memory (recall Fig. 3): this memory is necessary even without
WMU. Although the device that we use is the smallest in its family,
the WMU area overhead is acceptable (not more than one fifth of the
EPXA1 resources are used). The area overhead would be practically
null, if the WMU were implemented in ASIC.

E. Results Summary

Fig. 13 shows execution times for the IDEA application running on
two different platforms (the Altera-based with Excalibur EPXA1 de-
vice and the Xilinx-based with Virtex-II Pro XC2VP30 device). Our

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 14, NO. 8, AUGUST 2006 915

Fig. 13. Two different platforms (Altera Excalibur-based and Xilinx Virtex-II
Pro-based) run the same application. Results are shown for pure SW (ARM,
PowerPC) and VMW-based coprocessors, with no prefetching (Altera-NP,
Xilinx-NP) and with prefetching (Altera-P, Xilinx-P) in the VMW.

intention is not to compare the platforms, but to emphasize that run-
ning the experiments on a different platform implies only porting the
WMU HW and the VMW SW, and does not require any changes to
the coprocessor HDL nor to the application C code. VMW-based ap-
plications can achieve significant performance advantage over the pure
software, in spite of the introduced virtualization. The overhead can
be reduced, especially with the address translation done in VLSI (as
it is done for MMUs). Dynamic optimizations can provide additional
speedups with no change on the application side.

VIII. CONCLUSION

We have proposed a unified memory abstraction for SW and
HW parts of reconfigurable applications. Our VMW: 1) provides
a straightforward programming paradigm (programmers are com-
pletely screened from interfacing-related memory transfers); 2) makes
reconfigurable applications completely portable (recompiling and
resynthesising is sufficient); and 3) enables advanced and yet simple
runtime optimizations (without any change in either application SW or
coprocessor HW). By testing our approach on real systems, we have
shown that the price to pay is affordable. After reducing the overhead
of the virtualization layer, future research should address runtime op-
timizations for exposing the hardware speedup to its maximal extent.

REFERENCES

[1] Altera Excalibur Devices, Altera Corporation, 2003. [Online]. Avail-
able: http://www.altera.com/literature/

[2] Xilinx Virtex ProII Devices, Xilinx Inc., 2003. [Online]. Available:
http://www.xilinx.com/

[3] H. Walder and M. Platzner, “Online scheduling for block-partitioned
reconfigurable devices,” in Proc. Des. Autom. Test Eur. Conf. Exhibi-
tion, 2003, pp. 290–295.

[4] P. Leong, M. Leong, O. Cheung, T. Tung, C. Kwow, M. Wong, and K.
Lee, “Pilchard—A reconfigurable computing platform with memory
slot interface,” in Proc. 9th IEEE Symp. Field-Program. Custom
Comput. Machines, 2001, pp. 170–179.

[5] V. Nollet, P. Coene, D. Verkest, S. Vernalde, and R. Lauwereins, “De-
signing an operating system for a heterogeneous reconfigurable SoC,”
in Proc. Int. Parallel Distrib. Process. Symp., Reconfigurable Arch.
Workshop (RAW), 2003, pp. 22–26.

[6] C. Sullivan and M. Saini, “Software-compiled system design optimizes
Xilinx programmable systems,” Xcell J., no. 46, pp. 32–37, 2003.

[7] M. Vuletić, L. Pozzi, and P. Ienne, “Seamless hardware-software
integration in reconfigurable computing systems,” IEEE Des. Test
Comput., vol. 22, no. 2, pp. 102–13, Mar.–Apr. 2005.

[8] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quanti-
tative Approach, 3rd ed. San Mateo, CA: Morgan Kaufmann, 2002.

[9] M. Vuletić, L. Pozzi, and P. Ienne, “Virtual memory window for a
portable reconfigurable cryptography coprocessor,” in Proc. 12th IEEE
Symp. Field-Program. Custom Comput. Machines, 2004, pp. 24–33.

[10] ——, “Dynamic prefetching in the virtual memory window of portable
reconfigurable coprocessors,” in Proc. 14th Int. Conf. Field-Program.
Logic Appl., 2004, pp. 596–605.

[11] N. P. Jouppi, “Improving direct-mapped cache performance by the ad-
dition of a small fully-associative cache and prefetch buffers,” in Proc.
17th Annu. Int. Symp. Comput. Arch., 1990, pp. 364–73.

[12] S. Palacharla and R. E. Kessler, “Evaluating stream buffers as a sec-
ondary cache replacement,” in Proc. 21st Annu. Int. Symp. Comput.
Arch., 1994, pp. 24–33.

New Degree Computationless Modified Euclid Algorithm
and Architecture for Reed-Solomon Decoder

Jae H. Baek and Myung H. Sunwoo

Abstract—This paper proposes a new degree computationless mod-
ified Euclid (DCME) algorithm and its dedicated architecture for
Reed–Solomon (RS) decoder. This architecture has low hardware com-
plexity compared with conventional modified Euclid (ME) architectures,
since it can completely remove the degree computation and comparison
circuits. The architecture employing a systolic array requires only the
latency of 2t clock cycles to solve the key equation without initial latency.
In addition, the DCME architecture using 3t+ 2 basic cells has regularity
and scalability since it uses only one processing element. Hence, the
proposed DCME architecture provides the short latency and low-cost RS
decoding. The DCME architecture has been synthesized using the 0.25-�m
Faraday CMOS standard cell library and operates at 200 MHz. The gate
count of the DCME architecture is 21 760. Hence, the RS decoder using the
proposed DCME architecture can reduce the total gate count by at least
23% and the total latency to at least 10% compared with conventional ME
decoders.

Index Terms—Degree computation circuit, forward error control, low
hardware complexity, Reed–Solomon (RS) codes, short latency, systolic
array, VLSI design.

I. INTRODUCTION

Error control codes are widely used in communication systems
to protect the transmitted data from errors. Error control codes are
classified into convolutional and block codes. Reed–Solomon (RS)
codes are linear block codes and belong to the class of nonbinary
Bose–Chaudhuri–Hocquenheim (BCH) codes [1]. RS codes providing
the capability to efficiently correct burst errors, as well as random
errors, have been extensively used in various communications and
digital data storage systems, such as Power Line Communications
(PLC) [2], Digital Video Broadcasting Terrestrial (DVB-T) system
[3], Vestigial Sideband (VSB) system [4], cable modem [5], satellite
and mobile communications [6], magnetic recording [7], etc.

The general (n; k; t) RS code defined in the Galois field (GF) has
a code length n = 2m � 1, where k denotes the number of m-bit
message symbols. The RS code has the error correction capability

Manuscript received January 31, 2003; revised July 5, 2003, February 17,
2005, and March 8, 2006. This work was supported in part by the National Re-
search Laboratory (NRL) program, by the Post Brain Korea 21 (BK 21) pro-
gram, and by IC Design Education Center (IDEC).

The authors are with the School of Electrical and Computer Engineering,
Ajou University, Suwon 443-794, Korea (e-mail: sunwoo@ajou.ac.kr).

Digital Object Identifier 10.1109/TVLSI.2006.878484

1063-8210/$20.00 © 2006 IEEE

