
Rethinking FPGAs: Elude the Flexibility Excess of LUTs
with And-Inverter Cones

Hadi Parandeh-Afshar
hadi.parandehafshar@epfl.ch

Hind Benbihi
hind.benbihi@epfl.ch

David Novo
david.novobruna@epfl.ch

Paolo Ienne
paolo.ienne@epfl.ch

Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences, 1015 Lausanne, Switzerland

ABSTRACT
Look-Up Tables (LUTs) are universally used in FPGAs as
the elementary logic blocks. They can implement any logic
function and thus covering a circuit is a relatively straight-
forward problem. Naturally, flexibility comes at a price, and
increasing the number of LUT inputs to cover larger parts
of a circuit has an exponential cost in the LUT complexity.
Hence, rarely LUTs with more than 4–6 inputs have been
used. In this paper we argue that other elementary logic
blocks can provide a better compromise between hardware
complexity, flexibility, delay, and input and output counts.
Inspired by recent trends in synthesis and verification, we
explore blocks based on And-Inverter Graphs (AIGs): they
have a complexity which is only linear in the number of
inputs, they sport the potential for multiple independent
outputs, and the delay is only logarithmic in the number
of inputs. Of course, these new blocks are extremely less
flexible than LUTs; yet, we show (i) that effective mapping
algorithms exist, (ii) that, due to their simplicity, poor uti-
lization is less of an issue than with LUTs, and (iii) that
a few LUTs can still be used in extreme unfortunate cases.
We show first results indicating that this new logic block
combined to some LUTs in hybrid FPGAs can reduce delay
up to 22–32% and area by some 16% on average. Yet, we
explored only a few design points and we think that these
results could still be improved by a more systematic explo-
ration.

Categories and Subject Descriptors
B.6.1 [Logic Design]: Design Styles—Logic arrays, Com-
binational logic; B.7.1 [Integrated Circuits]: Types and
Design Styles—Gate arrays

General Terms
Design, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’12, February 22–24, 2012, Monterey, California, USA.
Copyright 2012 ACM 978-1-4503-1155-7/12/02 ...$10.00.

5a7 Mapping with 6-LUTs 5b7 Mapping with 4-AIC

5c7 Proposed FPGA architecture

depth = 2 Levels

area = 2 LUTs
depth = 1 Level

area = 1 AIC

O0

O1

i0 i1 i2 i3 i4 i5 i6 i7

O0

O1

i0 i1 i2 i3 i4 i5 i6 i7

LUT

LUT

AIC

AIC

LUT

Figure 1: Flexibility, bandwidth, cost, and delay.
(a)–(b) And-Inverter Cones (AICs) can map circuits
more efficiently than LUTs, because AICs are multi-
output blocks and cover more logic depth due to
their higher input bandwidth. (c) A possible inte-
gration of AIC clusters in an FPGA architecture.

Keywords
FPGA Logic Block, Logic Synthesis, And-Inverter Graph,
And-Inverter Cone

1. INTRODUCTION
Since their commercial introduction in the ’80s, FPGAs

have been essentially based on Look-Up Tables (LUTs). K-
input LUTs have one great virtue: they are generic blocks
which can implement any logic function of K inputs, and this
makes it relatively easy to perform at least some elementary
technology mapping: crudely, the problem of mapping re-
duces to cover the circuit to map with K-input subgraphs,
irrespective of the function they represent. This flexibil-



ity, and the consequent advantages, do not come for free:
LUTs tend to be large (roughly, their area grows exponen-
tially with the number of inputs) and somehow slow (equally
roughly, the delay grows linearly with the number of inputs).
Also, the number of outputs is intrinsically one and internal
fan-out in the subgraphs used for covering is not really pos-
sible. Fig. 1(a) suggests graphically how the small number
of inputs and the absence of intermediate outputs limit the
usefulness of LUTs.

This seems to suggest that perhaps it would be wise to
look for less versatile but more efficient logic blocks. In fact,
researchers have at times looked into alternate blocks ever
since FPGAs have attracted growing research and commer-
cial interest. Yet, naturally, these alternate structures have
been somehow related to the logic synthesis capabilities of
the time, and thus have almost universally addressed pro-
grammable AND/OR configurations in the form of small
Programmable Array Logics (PALs) (e.g., [14, 13, 8]). Tra-
ditionally, synthesis has been built on the sum of products
representation and on algebraic transformations, but new
paradigms have emerged in recent years. The one we are
interested in is based on And-Inverter Graphs (AIGs) as
implemented in the well-know academic synthesis and veri-
fication framework ABC [20]. This representation, in which
all nodes are 2-input AND gates with an optional inversion
at the output, is not new [11], but has received interest in
recent years due to some fortunate combination when used
with, for instance, Boolean satisfiability (SAT) solvers. Once
a circuit is written and optimized in the form of an AIG, one
can find very many AIG subgraphs of various depth rooted
at different nodes in the circuit.

Thus, we introduce a new logic block that we call And-
Inverter Cone (AIC). An AIC (which is explained in detail in
Fig. 3) is essentially the simplest reconfigurable circuit where
arbitrary AIGs can be naturally mapped: it is a binary tree
composed of AND gates with a programmable conditional
inversion and a number of intermediary outputs. Compared
to LUTs, AICs can be richer in terms of input and output
bandwidth, because their area grows only linearly with the
number of inputs. Also their delay grows only logarithimi-
cally with the input count and intermediate outputs are eas-
ier to implement. This makes it possible for AICs to cover
AIG nodes more efficiently, as suggested in Fig. 1(a)-(b). In
this paper, we will explore the value of AICs both as the sole
components of new FPGAs as well as logic blocks for some
hybrid FPGA made of both LUTs and AICs, as illustrated
in Fig. 1(c). Although far from exploring comprehensively
the space of AIC-based solutions, our results suggest that
some hybrid solutions look particularly promising and, at
the very least, deserve some further attention to refine our
analysis.

The rest of the paper adapts the traditional CAD flow
used on conventional FPGAs to the needs of AICs and,
simultaneously, uses some of the partial results to fix the
structure of our novel FPGA. Fig. 2 suggests this graphi-
cally: Section 2 addresses the design of the AIC to suit the
abilities of modern AIG synthesis. Section 3 adapts tra-
ditional technology mapping to the new block. Section 4
looks at how to combine logic blocks in larger clusters with
local routing, and Section 5 discusses the packing problem
to complete the flow. Sections 6 and 7 then report our ex-
perimental results. We discuss related work in Section 8 and
then wrap up with some conclusive remarks.

F
P

G
A

(C
A

D
(F

lo
w

F
P

G
A

(D
e

s
ig

n
(F

lo
w

LUT

LUT

LUT

LUT

LUT

LUT

AIC

LUT

Logic(Block(Design( Logic(Cluster(Design

Logic(Synthesis( Technology(Mapping Packing(

(Section(3)

(Section(2) (Section(4)

(Section(5)

Figure 2: The paths to design and use a novel FPGA
with AICs. In this paper, we alternate between
adapting the traditional CAD flow to our new needs
and using the results to fix our architecture. To each
of the last four steps is devoted one of the sections
of the paper, as indicated.

2. LOGIC BLOCK DESIGN
A new logic block is proposed in this section. This at-

tempts to reduce the degree of generality provided by typical
LUTs in order to obtain faster mappings. Unlike LUTs, our
logic block is not able to implement all possible functions
of its inputs. In the following, the choice of logic block is
motivated and its architecture is discussed.

2.1 An AIG-inspired logic block
An And-Inverter Graph (AIG) is a Directed Acyclic Graph

(DAG), in which the logic nodes are two-input AND gates
and the edges can be complemented to represent inverters
at the node outputs. AIGs have been proven to be ad-
vantageous for combinational logic synthesis and optimiza-
tion [20]. This graph representation format is also used
for technology mapping step in both FPGA and ASIC de-
signs [4].

Interestingly, AIGs include various cone-like subgraphs
rooted at each node with different depths. Usually, the sub-
graphs with lower depths are more symmetric and resemble
full binary trees. The frequent occurrence of such conic sub-
graphs serves as motivation of this work, where we propose
a new logic block that can map cones with different depths
more efficiently than LUTs. The basic idea is to have a sym-
metric and conic block with depth D, which maps arbitrary
AIG subgraphs with depth ≤ D. This logic block is called
And-Inverter Cone (AIC).

To illustrate the potential benefits of AICs with respect
to LUTs, we refer to Fig. 1, where two levels of LUTs are
required to map the same functionality that can be mapped
onto a single AIC. The reason for that is twofold: on the
one hand, the LUT size is limited to six inputs and the en-
tire AIG (8 inputs) can not fit into just one 6-LUT. On the
other hand, even if the size of the LUT was big enough,
the mapping would still use two LUTs, as the AIG has two
distinct outputs. It is worth mentioning that increasing the
LUT size to accommodate more inputs would result in a
huge area overhead. Instead, the proposed AIC inherently
offers smaller area and propagation delay than a LUT for the
same number of inputs. For example, a 4-AIC with 16 in-



Block inputs outputs 2:1 mux config bits

2-AIC 4 1 3 3
3-AIC 8 3 7 7
4-AIC 16 7 15 15
5-AIC 32 15 31 31
6-AIC 64 31 63 63

6-LUT 6 1 64 64

Table 1: AICs have less configuration bits than
LUTs, while they can implement circuits with a
much greater number of inputs (e.g., a 6-AIC in-
cludes 8 times more inputs than a typical 6-LUT).

puts requires half the area of a 6-input LUT—using the area
model of Section 6.1 with less delay. Clearly, the fact that
more wires need to be connected to the AICs creates new
routing congestion issues. However, as detailed in Section 4,
these can largely be alleviated by packing several AICs in a
limited bandwidth AIC cluster with local interconnect.

2.2 AND-Inverter Cone (AIC) Architecture
Fig. 3 shows the architecture of an And-Inverter Cone

(AIC), which has five levels of cells. Each cell can be con-
figured as either a two-input NAND or AND gate. Notice
that each cell has an AIC output, except for the cells be-
longing to the lowest level of the AIC. This provides access
to intermediate nodes as in the example of Fig. 1. Moreover,
these outputs enable to configure a bigger AIC as multiple
smaller ones. For example, the AIC of Fig. 3, implements
the AIG of Fig. 1 at the right-hand side while the left-hand
side can be used to implement other functions with various
combinations of 2-, 3-, and 4-AICs. Accordingly, a 5-AIC
contains two 4-AICs, four 3-AICs, or eight 2-AICs.

Generalizing, each D-AIC has 2D− 1 cells, 2D inputs and
2D−2D−1−1 outputs. In the rest of the paper, we consider
D-AICs with depths from three to six, and we will study the
effect of the allowed AIC depth on the mapping solution.
Depths greater than six are not considered, as they require
a huge input bandwidth, which may result in major mod-
ifications of the global routing network of current FPGAs.
Table 1 compares different D-AICs with the conventional
6-LUT in terms of IO bandwidth, number of configuration
bits and multiplexers.

3. TECHNOLOGY MAPPING
During technology mapping, the nodes comprising the

AIG are clustered into subgraphs that can be mapped onto
an AIC or a LUT. This can be done in multiple ways de-
pending on the optimization objectives including delay and
area.

In this work, the primary optimization objective of tech-
nology mapping is delay minimization and consequently a
mapping solution is said to be optimal if the mapping delay
is minimum. Area reduction is also considered but just as a
secondary optimization objective. Technology mapping for
AICs is similar to the typical LUT technology mapping but
adapted to the peculiarities of AICs, such as the fact that
multiple outputs are possible. In the rest of the section, the
mapping problem is first formalized and then the main four
steps of the mapping algorithm are described in detail.

3.1 Definitions and Problem Formulation
A technology independent synthesized netlist (AIG for-

mat) is input to our mapping heuristic. Such netlist is auto-
matically produced by ABC [20]. We take the input netlist
and extract the combinational parts of the circuit and repre-
sent them by a DAG G = (V (G), E(G)). A node v ∈ V (G)
can represent an AND gate, a primary input (PI), a pseudo
input (PSI, output of a flipflop), a primary output (PO), or
a pseudo output (PSO, input of a flipflop). A directed edge
e ∈ E(G) represents an interconnection wire in the input
netlist. The edge can have the complemented attribute to
represent the inversion of the signal.

At a node v, the depth depth(v) denotes the length of the
longest path from any of the PIs or PSIs to v. The height
height(v) denotes the the length of the longest path from v
to any of the POs or PSOs. Accordingly, the depth of a PI
or PSI node and the height of a PO or PSO node are zero.

The mapping algorithm that we use in this work is a mod-
ified version of the classical depth-optimal LUT mapping al-
gorithm [6]. It is well known that the problem of minimizing
the depth can be solved optimally in polynomial time using
dynamic programming [6, 15]. However, we also target area-
minimization as a secondary objective, which is known to be
NP-hard for LUTs of size three and greater [7, 16]. We use
area flow heuristic [19] for area approximation during the
mapping.

The mapping of a graph in LUTs requires different con-
siderations. For a node v, there exist several subgraphs con-
taining v as the root, which are called cones. Accordingly,
Cv is a cone that includes node v in its root and some or
all of its predecessors. For mapping Cv by a LUT, it should
be K-feasible, where inputs(Cv) ≤ K. Moreover, the cone
should be fanout-free, meaning that the only path out of
Cv is through v. If the cone is not fanout free, then the
node which provides the fanout may be duplicated and will
be mapped by other LUT(s), as the primary minimization
objective is depth.

The AICs mapping cone candidates of v are extracted
differently. In this case, rather than being K-feasible, a
cone Cv, to be mappable on a D-AIC block, should be depth
feasible, where depth(Cv) ≤ D. The other constraint is that
the nodes at lowest depth of Cv, should not have any path to
a node outside Cv, otherwise such nodes are removed from
Cv. This condition ensures that Cv to be mappable to an
AIC such as the one illustrated in Fig. 3, in which no AIC
output is driven by the nodes at the lowest level of the AIC.

When AICs are considered as the mapping target in ad-
dition to LUTs, the definition of the problem of mapping
for depth does not change. The only difference is that the
cone candidates of AICs are added to the cone candidates of
LUTs for each node in the graph. Although the conditions
of eligibility for LUTs and AICs are different, it is possible
to have common cones between the two that are treated as
separate candidates.

Next, the main steps of the mapping algorithm are de-
scribed in detail.

3.2 Generating All Cones
To generate all K-feasible cones, we use the algorithm de-

scribed in [9, 22], in which the cones of a node are computed
by combining the cones of the input nodes in every possible
way. This step of the mapping takes a significant portion of



i

O7

O0

O1 O2

O3 O4 O5 O6

O8 O9 O10 O11 O12 O13 O14

0 i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17 i18 i19 i20 i21 i22 i23 i24 i25 i26 i27 i28 i29 i30 i31

Out

i0 i1

S

i0 i1 i2 i3 i4 i5 i6 i71 i2 i3 i4 1 11 1

O1

input assignment of AIG of Fig. 1

output assignment of AIG of Fig. 1

replicated nodes

bypass node

O0

Figure 3: Architecture of 5-AIC (AND-Inverter Cone), which has five levels of cells that are programmable
to either AND or NAND gates. The 5-AIC can also be configured to 2-, 3-, and 4-AICs in many ways
(highlighted cells show one possibility), without any need for extra hardware. The AIG of Fig. 1 is mapped
onto the right-hand side. To propagate a signal, we can configure a cell to the bypass mode (e.g., forcing one
input to 1 when this is operated as an AND). Moreover, some AIG nodes need to be replicated when the
fanout of an internal value is larger than one.

O(a) AIC mapping (b) LUT mapping

v

u

O0

O1

i0 i1 i2 i3 i4

v

u

0

O1

i0 i1 i2 i3 i4

Figure 4: Difference between LUT and AIC map-
ping. Since AICs are inherently multi-output
blocks, the same cone rooted at u in (a) can also
be a (free) mapping cone of v, while in LUT map-
ping, no common cone exist for any two nodes (b).

the total execution time, specially when K is a large value
such as six.

The cone generation for AICs is different from the cone
generation for LUTs, as the cones of each node are pro-
duced independently from the cones of its input nodes. To
generate all possible D-AIC mappable cones for a node v,
the subgraphs rooted at v are examined by varying the cone
depth from two to D. All possible subgraphs that meet the
AIC mapping conditions described in section 3.1, are added
to the cone set of node v. If a cone Cv satisfies the depth
condition, but has a fanout node u at the lowest depth of
the cone, u will be removed from Cv; if this still satisfies
the depth condition, the cone will be added to the D-AIC
mappable cone set.

The main difference between the cone generation for AICs
and LUTs is having common cone candidates for different

nodes, as shown in Fig. 4. This is possible, as AICs are
multi-output. In this figure, the cone that has u as its root,
can be used to map both v and u. Therefore, this cone
should be in the AIC cone sets of both nodes. We call this
cone as a free cone for node v, as it maps v for free when it
is selected for u mapping.

The time complexity of the D-AIC cone generation is
O(M · D), where M is the number of nodes in the graph
and D is the maximum depth of an AIC block.

3.3 Forward Traversal
Once the cones sets of both LUTs and AICS are com-

puted for every node in the graph, the next step is to find
the best cone of each node by traversing the graph in topo-
logical order. Since the primary objective in this work is to
minimize the depth, the best cone of node v is the one that
gives v the lowest depth. If there is more than one option,
the cone which brings less area flow to v is selected (see [19]
for further details). The depth and area flow of v, when
mapped onto cone Cv, are dependent on the depth and area
flow values of the Cv input nodes.

To compute the depth and area flow of node v, we use
Equations 1 and 2, respectively. Since the FPGA blocks,
including K-LUTs and D-AICs, are heterogeneous and have
different depths, we should consider the interconnection wire
delays for the depth computation of each node, similar to the
edge-delay model [23]. Although we have both local (intra
cluster) and global (inter cluster) routing wires, which have
different delays, we assume that all wires have unique delay
equal to the average delay of the local and global wires.

dp(v) = max(dp(In(Cv)) + dp(Cv) + dp(wire)) (1)

af(v) =

nIn(Cv)∑
i=0

(af(Ini(Cv)) + area(Cv) (2)



Algorithm 1 Find the best cone for each node of the DAG

1: BestCv.dp←∞
2: BestCv.af ←∞
3: for i = 1→ nCv(LUT ) do
4: v.setdp(Cv(i))
5: v.setaf(Cv(i))
6: cond1 ← Cv(i).dp < BestCv.dp
7: cond2 ← Cv(i).dp = BestCv.dp
8: cond3 ← Cv(i).af < BestCv.af
9: if cond1 || (cond2 && cond3) then

10: BestCv ← Cv(i)
11: end if
12: end for
13: for i = 1→ nCv(AIC) do
14: v.setdp(Cv(i))
15: v.setaf(Cv(i))
16: cond1 ← Cv(i).dp < BestCv.dp
17: cond2 ← Cv(i).dp = BestCv.dp
18: cond3 ← Cv(i).af < BestCv.af
19: if cond1 || (cond2 && cond3) then
20: BestCv ← Cv(i)
21: end if
22: cond1 ← Cv(i).dp < BestBackupCv.dp
23: cond2 ← Cv(i).dp = BestBackupCv.dp
24: cond3 ← Cv(i).af < BestBackupCv.af
25: if Cv(i).root = v then
26: if cond1 || (cond2 && cond3) then
27: BestBackupCv ← Cv(i)
28: end if
29: end if
30: end for

In the above equations, dp(Cv) and area(Cv) are the depth
and area of the logic block that Cv can be mapped on. This
block can be either a K-LUT or a D-AIC. If Cv is a free
cone of node v, then dp(Cv) and dp(In(Cv)) will refer to
the depth and inputs of the sub-AIC in Cv. And for area
flow computation, the term area(Cv) will be removed from
Equation 2.

Algorithm 1 presents the pseudo-code of the algorithm
used to find the best cone of each AIG node. This function
iterates over all generated cones for both LUTs and AICs of
node v to find the best cone that has the lowest depth. If
two cones have the same depth, the one that requires smaller
area is selected. If the best cone of node v is a free cone, this
cone will be selected for the mapping, if and only if the root
of the cone—which is not v—is visible in the final mapping
solution and this cone is the best cone of the root node as
well. If one of these two conditions does not hold, then we
need to select another cone as the best cone for v. Therefore,
it is essential to maintain a non-free best cone—v is the root
of such a cone—for v as a backup best cone.

3.4 Backward Traversal
In this step, the graph is covered by the best cones of the

visible nodes in the graph, which are added to the mapping
solution set S. A node is called visible, if it is an output or
input node of a selected cone in the final mapping. Initially
POs and PSOs are the only visible nodes and S is empty.
The graph traversal is performed in reverse topological order
from POs and PSOs to PIs and PSIs. If the visited node v is
visible, then its best cone, BCv, is selected for the mapping

and is the added to S. Then, all the input nodes of BCv

become visible and the graph traversal continues. If the
BCv is a free cone and it is already in S, there is no need
to add it again and only the heights of the input nodes of
v are updated. Otherwise, if the free cone is not in S, then
the backup BCv, which has v as its root, is selected for
mapping and is added to S. During the backward traversal,
the height of each visible node is updated. Once a BCv

is selected for mapping, the height of its input nodes are
updated by adding the height of v to the depth of v within
the target AIC or LUT.

3.5 Converting Cones to LUTs and AICs
The mapping solution S, which is generated during the

Backward Traversal, includes all the cones that cover the
graph. The next step is mapping the cones in S to either
a K-LUT or a D-AIC. If the selected cone belongs to the
K-feasible cone set of node v, then it should be implemented
by a LUT. Otherwise, the cone is a D-AIC mappable cone,
which is implemented by an AIC. The depth of the cone
defines the type of the target AIC block.

4. LOGIC CLUSTER DESIGN
The proposed AICs require a much higher IO bandwidth

than typical LUTs. In order to alleviate the routing problem
that may result from that increase, we propose to group
multiple AICs into an AIC cluster with local interconnect.

To form an AIC cluster, we integrate N D-AICs, optional
flipflops at the outputs of D-AICs to support sequential cir-
cuits, and an input and an output crossbar. The input cross-
bar drives the inputs of the AICs in the cluster, and the
output crossbar drives the outputs of the cluster. Since we
do not want to change the inter-cluster routing architecture
of the FPGAs, we use the same bandwidth of LUT-based
clusters for AIC clusters and keep the AIC cluster area close
to the area of the reference LUT cluster, which is the Logic
Array Block (LAB) in the Altera Stratix-III.

To study the effect of the AIC size on the mapping re-
sults, we select different D-AICs as the base logic block in
a cluster, where D varies from three to six and can be con-
figured to implement the AIC blocks that have depth ≤ D.
However, the number of the D-AIC blocks in the cluster, N ,
varies for different D values such that the number of sub-
AICs in the cluster remains the same and no changes occur
in the cluster crossbars.

The two crossbars in the AIC cluster are the main con-
tributors to the cluster area. Crossbars are basically con-
structed with multiplexers and their area depends on their
density and on the number of the crossbar inputs and out-
puts. Since both crossbars get the outputs of N D-AICs as
the input, reducing the number of the D-AIC outputs will
significantly reduce the area share of the crossbars. Origi-
nally, each D-AIC has 2D − 2D−1 − 1 outputs, but in our
experiments, we observed that in the extreme case only 2D−2

outputs are utilized and that is when a D-AIC is configured
to 2D−2 2-AICs. Hence, a very simple sparse crossbar is
added at the output of each D-AIC to reduce the number of
D-AIC outputs to 2D−2.

The second technique used to reduce the crossbar area is
to decrease its connectivity and make it sparse. To trade-
off the crossbar density and packing efficiency in the AIC
cluster, we measured the packing efficiency of the clusters
having an input crossbar with 50%, 75%, and 100% connec-



40 

50 

60 

70 

80 

90 

100 

6-AIC 5-AIC 4-AIC 3-AIC 2-AIC 

P
ac

ki
n

g 
Ef

fi
ci

e
n

cy
 (

%
) 

Sparse(50%) Sparse(75%) Full  

Figure 5: The packing efficiency of three crossbar
connectivity scenarios: 50%, 75%, and 100%. The
allowed cone depth in technology mapping is varied
to study the effect of AIC size on the packing quality.

tivities. The packing efficiency is the ratio of the number of
AIC clusters, assuming that each AIC cluster has unlimited
bandwidth and the actual number of AIC clusters that is
obtained from packing. To calculate the number of clusters
in the ideal packing, we use Equation 3. In this equation,
nCi is the number of cones with depth i. Fig. 5 shows the
results of this experiment for different base AIC blocks in
the cluster. The reported efficiency is the average packing
efficiency of the 20 biggest MCNC benchmarks.

nClustersideal =

6∑
i=2

(
nCi

N · 26−i
) (3)

One observation from Fig. 5 is that the packing efficiency
is substantially reduced for all the three scenarios, when the
allowed cone depth in the technology mapping is reduced.
This is reasonable, as the probability of input sharing and
open inputs is reduced for smaller cones. Moreover, when
smaller AICs are packed to a D-AIC, a larger number of
the D-AIC outputs are utilized, which increases the output
bandwidth requirement. The second observation is that re-
ducing the crossbar connectivity to 75% largely maintains
the packing efficiency of the full crossbar. However, the
packing efficiency for the crossbar with 50% connectivity de-
creases to a larger extent. Therefore, one option to reduce
the crossbar area without having a sensible degradation in
packing efficiency is to set the crossbar connectivity to 75%.

Exploiting the mentioned crossbar simplifications, and by
using the area model of Section 6.1, the area of the AIC clus-
ter remains close to the area of a LAB, when three 6-AICs,
six 5-AICs, twelve 4-AICs, or twenty four 3-AICs are inte-
grated in the AIC cluster. As mentioned, the input/output
crossbars of the AIC cluster are fixed for all scenarios.

5. PACKING APPROACH
In the previous section, we defined the architecture of the

AIC cluster. Given the AIC and LUT clusters, the next
step is to pack the technology mapped netlist onto the clus-
ters. For the packing, we use the AAPack [18] tool, which
is an architecture-aware packing tool developed for FPGAs.
The input to AAPack is the technology mapped netlist with
unpacked blocks, as well as a description of an FPGA ar-
chitecture. The output is a netlist of packed complex blocks
that is functionally equivalent to the input netlist. Similarly,
we also use AAPack to pack LUTs in LABs.

The packing algorithm uses an affinity metric to optimize
the packing. This affinity metric defines the amount of net

Component Area (TrminW)

6-AIC block 1,512
6-AIC output Xbar 217
6-AIC FFs and muxes 1,104
AIC cluster input Xbar 22,072
AIC cluster out Xbar 2,660
AIC cluster buffers 1,447

AIC cluster with three 6-AICs 34,678

ALM 1,751
LAB in Xbar 16,251
LAB buffers 470

LAB with ten ALMs 34,231

Table 2: Areas of different components in an
AIC cluster and in a LAB, measured in units of
minimum-width transistor area.

sharing between p, which is a packing candidate, and B,
which is a partially filled complex block. In the architecture
file, the complex block should be represented as an ordered
tree. Nodes in the tree correspond to physical blocks or
modes. The root of tree corresponds to an entire complex
block and the leaf nodes correspond to the primitives within
the complex block. For the D-AIC complex block, we con-
struct a tree similar to the DSP block multiplier tree in the
original paper, by which we define different configuration
modes of the D-AIC. The number of AICs in the cluster as
well as the crossbars structure are also defined in the ar-
chitecture file. The information is used by the packer to
group the individual blocks in clusters. During the packing
process, some routability checking are performed to ensure
(local and global) routability of the packing solution, which
considers the intra-block and the general FPGA intercon-
nect resources.

6. EXPERIMENTAL METHODOLOGY
In this work, we use a classic area and delay model [5]:

The area model is based on the transistor area in units of
minimum-width transistor area; the rationale is that to a
large extent the total area is determined by the transis-
tors more than by the metal connections. For the delay
model, circuits are modeled using SPICE simulations for
90-nm CMOS process technology.

6.1 Area Model
The area modeling method requires a detailed transistor-

level circuit design of all the circuitry in the FPGA [5]. Fig. 6
shows an AIC cluster with three 6-AICs. Table 2 lists the
area of different components in the AIC cluster and in a LAB
in terms of number of minimum-width transistors. ALM
stands for Adaptive Logic Module, which is the logic block
in Altera Stratix-II and in following series. Based on this
table, the area of an AIC cluster with three 6-AICs and the
crossbars mentioned in Section 4 is marginally larger than
a LAB with 10 ALMs. As mentioned in Section 4, the AIC
cluster has almost the same area when the basic AIC block
is changed.

6.2 Delay Model
The circuit level design of the AIC cluster suggested in

Fig. 6 is also used for accurate modeling of the cluster delays.



S
parse C

rossb
ar

A

S
parse C

rossbar
D

ro
ut

in
g

 w
ir

e
 s

e
g

m
en

t

ro
u

tin
g

 w
ir

e
 s

e
g

m
e

n
t

FF

FF

CS

S

B

6-A
IC

FF

FF

S

S

6-A
IC

FF

FF

S

S

6-A
IC

1

64

1

112

1

192

1

64

1

31
16

1

1

48

1

20

 
 

Figure 6: Structure and delay paths of an AIC cluster with three 6-AICs.

Path Description Delay (ps)

A → B 6-AIC main output 496
B → C crossbar and FF-Mux 75
C → D output crossbar of cluster 50

Table 3: Delays of different of paths in the AIC
cluster of Fig. 6.

The crossbars in this figure are developed using multiplexers,
and for these we adopted the two level hybrid multiplexer
that is used in Stratix-II [17]. Hence, the critical path of
each crossbar goes through two pass-gates, with buffers on
the inputs and outputs of the components that include pass
transistors.

We performed SPICE simulations with 90nm 1.2 V CMOS
process, to determine the delay of all paths in the cluster
shown in Fig. 6. The results are listed in Table 3. For
the path between B and C, the delay number relates to the
path that goes through the main output of the 6-AIC, which
has the longest path. These delay numbers are used in the
technology mapping to minimize the delay of the mapped
circuit.

We also measured the delay of a LAB by SPICE simula-
tion. Simulation results revealed that the delay of a 6-LUT
in an ALM, excluding the LAB input crossbar, in 90nm
CMOS process, is between 280ps and 500ps, taking into ac-
count that different LUT inputs have different delays. We
use the average delay (390ps) for our experiments. Based
on [1], the 6-LUT delay in 90nm process technology has
a delay between 162ps to 378ps and considering the extra
multiplexers that exist on the LUT output path in the ALM
structure, our delay numbers appear realistic.

7. RESULTS
We contrast three architectures and various mapping strate-

gies, using the MCNC benchmarks [24]. We consider the
original FPGA, a homogeneous FPGA exclusively composed
of AIC clusters, and a hybrid FPGA composed of both LUTs
and AIC clusters as different experiment scenarios. In the
hybrid structure, we also vary the base AIC block of the
AIC-cluster from 3-AIC to 6-AIC.

Mapping Scenario Intra-cluster Wires

LUT 50%
6-AIC 34%

LUT/6-AIC 35%
LUT/5-AIC 37%
LUT/4-AIC 38%
LUT/3-AIC 40%

Table 4: Average ratio of intra cluster wires for the
different mapping scenarios.

Fig. 7 shows the logic delays of the benchmarks for the
mentioned scenarios. The main observation is that the low-
est logic delay relates to the hybrid structure, as we have
both LUTs and AICs mapping options. Moreover, except
for the ex5p and frisc benchmarks, the logic delay is always
reduced when deeper cones are allowed, which appears pre-
dictable as a general trend. This is also visible in the num-
ber of logic-block levels on the critical path, either LUTs
or AICs, as shown in Fig. 8; the graph gives an indication
of the routing wires necessary to connect the logic blocks
of the circuits: although some logic delays are higher for
deeper cones, their total delay can be still better due to the
reduced number of wires between logic blocks. Comparing
LUT-only and AIC-only implementations, we see that there
are circuits that have better logic delay when LUTs are used,
but on average AIC-only implementation has 28% less logic
delay. Moreover, except for tseng and des, the number of
logic blocks on the critical path (and thus routing wires) in
the AIC-only implementation is less than or equal to that of
the LUT-only one.

As the current release of VPR 6.0 does not support tim-
ing driven placement and routing, we set a fixed delay value
for the interconnecting wires in order to estimate the total
circuit delay. This delay number is different for the differ-
ent mapping scenarios and its value is specified based on
the delay and used ratio of intra and inter cluster wires for
each mapping scenario that is reported in Table 4. Using
this wire delay, we compute the routing delay of the crit-
ical path of the circuits, using the number of logic blocks
in these paths. Fig. 9 illustrates a rough estimation of the



0 

1 

2 

3 

4 

5 

6 

alu4 apex2 apex4 bigkey clma des diffeq dsip elliptic ex5p ex1010 frisc misex3 pdc s298 s38417 s38584.1 seq spla tseng 

Lo
gi

c 
d

el
ay

 [
n

s]
 

LUT LUT/3-AIC LUT/4-AIC LUT/5-AIC LUT/6-AIC 6-AIC 

Figure 7: Logic delay of all benchmarks in the original FPGA (LUT), for the FPGA composed only of AIC
(6-AIC), and for a hybrid FPGA (LUT/6-AIC).

0 

2 

4 

6 

8 

10 

12 

14 

alu4 apex2 apex4 bigkey clma des diffeq dsip elliptic ex5p ex1010 frisc misex3 pdc s298 s38417 s38584.1 seq spla tseng 

Lo
gi

c 
b

lo
ck

 le
ve

ls
 

LUT LUT/3-AIC LUT/4-AIC LUT/5-AIC LUT/6-AIC 6-AIC 

Figure 8: Number of logic blocks (both LUTs and AICs) on the critical path.

LUT

Logic%Delay Routing%Delay

%%%LUT/6-AIC

%%%LUT/5-AIC

%%%LUT/4-AIC

%%%LUT/3-AIC

%%6-AIC

0.5 10.750.25

32%

27%

22%

13%

4%

Figure 9: Geometric mean of normalized total logic
and routing delays.

total average logic and routing delays of the circuits. On
average, the implementations on the pure 6-AIC architec-
ture and on the hybrid architecture with 6-AIC and 5-AIC
base blocks are 27%, 32%, and 22% faster than the baseline
FPGA, respectively.

Fig. 10 presents the distribution of LUTs and AICs for the
different architectures. This figure shows that when deeper

0 

500 

1000 

1500 

2000 

LUT LUT/3-AIC LUT/4-AIC LUT/5-AIC LUT/6-AIC 6-AIC 

LU
T 

o
r 

A
IC

  b
lo

ck
s 6-AIC 

5-AIC 

4-AIC 

3-AIC 

2-AIC 

LUT 

Figure 10: Number and type of logic blocks used in
the various architectures and with the various map-
ping strategies.

cones are allowed, less LUTs are used. Moreover, in each
case the usage of each AIC type has a reverse relation with
the size of the AIC. This means that the chance of mapping
a node with smaller AIC is always higher. Since each of
these LUTs and AICs are packed into clusters, the numbers
presented there do not indicate the real logic area of the
circuits. On the contrary, Fig. 11 illustrates the number of
clusters after packing: this is proportional to the active area
since the area of an AIC cluster is close to the area of a LAB
(see Table 2) and both have the same I/O bandwidth. For
some benchmarks, either the LUT/6-AIC hybrid architec-



0 

100 

200 

300 

400 

500 

600 

al
u

4
 

ap
ex

2
 

ap
ex

4
 

b
ig

ke
y 

cl
m

a 

d
es

 

d
if

fe
q

 

d
si

p
 

el
lip

ti
c 

ex
5

p
 

ex
1

0
1

0
 

fr
is

c 

m
is

ex
3

 

p
d

c 

s2
9

8
 

s3
8

4
1

7
 

s3
8

5
8

4
.1

 

se
q

 

sp
la

 

ts
en

g 

LA
B

+A
IC

  c
lu

st
er

s 
LUT LUT/5-AIC LUT/6-AIC 

Figure 11: Area measured as the total number of
clusters used, completely or partially. LABs and
AIC clusters occupy approximately the same area.
On average, LUT/5-AIC uses 16% less resources
than LUT-only.

Benchmark LUT LUT/ LUT/
5-AIC 6-AIC

alu4 14.9 10.59 11.32
apex2 16.4 15.2 12.9
apex4 15.5 16.1 14.1
bigkey 14.3 12.6 11.6
clma 20.8 22.9 25.5
des 14.6 16.1 15.1

diffeq 10.4 13.4 13.8
dsip 18.6 17.4 12.5

elliptic 15.5 16.6 16.7
ex5p 11.2 15.9 23.2

ex1010 23.8 18.2 30.3
frisc 18.8 19.35 23.2

misex3 14 12 13
pdc 22.8 23.4 21.2
s298 13.2 9.7 15.8

s38417 12.5 18.2 19
s38584.1 11.5 18.4 17.5

seq 17.1 15.5 15.5
spla 21.5 18.8 21.1

tseng 8.3 13.1 12.5

Table 5: Average wire length in units of one CLB
segments.

ture or the baseline FPGA display the lowest area; however,
the LUT/5-AIC architecture always results in the smallest
used area at a much better delay than the baseline FPGA
and a slightly worse one than LUT/6-AIC—refer to Fig. 9.
The two hybrid architectures define Pareto optimal points.

The hybrid structure of the proposed FPGA with the dif-
ferent cluster types needs to fix the right ratio of the two
flavors of logic blocks. The packing results indicate that
this ratio varies from one circuit to the other, making this
problem not straightforward. We have made some prelimi-
nary experiments on this front, and we have fixed the ratio
of LAB columns to AIC clusters to 1:4. The advantage of
AICs is that any logic function that is mapped to a LUT is
mappable to one or more AICs. The reverse is also true.
Therefore, it is possible to switch to another logic block
type, when we run out of one type. Moreover, considering
the small size of the AIC blocks, it is quite feasible to add
them as shadow blocks of the LUTs to the LUT clusters, by
reusing the existing input crossbar. This provides the option
to use either LUTs or AICs depending on the requirements.

Though, adding AICs as shadow blocks of LUTs remains as
the future work.

Table 5 presents the average wire length of each bench-
mark, in the baseline architecture (no AIC clusters) and
in the two best hybrid architectures, with the number of
routing channels fixed to 180 for all the experiments. We
observe that there is a fairly high variability—but averages
are very similar (15.8, 16.1, and 17.3 respectively)—with a
small trend against our hybrid architecture.

8. RELATED WORK
Leveraging the properties of logic synthesis netlist to sim-

plify the logic block of FPGAs is a current research topic [2,
3]. For instance, based on the observation that circuits rep-
resented using AIGs frequently have a trimming input, a
low-cost and still LUT-based logic block was designed that
requires less silicon area, but it does not improve the de-
lay [3]. Albeit somehow similar in its inspiration to modern
synthesis, our work is more radical in using the AIGs to
inspire the new logic cell.

Although LUT-based logic blocks dominate the architec-
tures of commercial FPGA, PAL-like logic blocks have also
been explored. In recent times, it has been shown that a
fairly small PAL-like structure, with 7–10 inputs and 10–
13 product terms, obtains performance gains at the price
of an increase in area [8]. Much earlier, some authors have
shown that K-input multiple-output PAL-style logic blocks
are more area efficient than 4-input LUTs. However, the
idea was abandoned because PAL-based implementations
typically consumed excessive static power [14]. Our solu-
tion moves away from the typical logic block natural of tra-
ditional logic synthesis, and we have shown that it seems
possible to improve both area and delay compared to LUT-
based FPGAs.

There are also numerous pieces of work which have adapted
or created reconfigurable logic blocks to specific needs, often
by adding dedicated logic gates to existing LUTs. Among
these, one can mention GARP [10] and Chimaera [25] for
datapath oriented processor acceleration, macro gates [12]
for implementing wide logic gates, and various sorts of fast
carry chains beyond those available commercially [21]. Al-
though they all somehow question the pure LUT as the most
efficient building block, they tend to introduce modifications
that are never real generic alternatives.

9. CONCLUSIONS
As several people before us, we have recognized that LUTs

have many advantages but, frequently, the price to pay for
these advantages is unreasonably high. We have thus ex-
plored new logic blocks inspired by recent trends in the cir-
cuits representations used in logic synthesis: we came to de-
fine AICs which are simply the natural configurable circuits
homologue of the newly popular AIGs. We have explored
alternate FPGAs architectures based on these AICs, essen-
tially fitting the new logic block into a traditional FPGA ar-
chitecture without changing some global parameters whose
impact would be very difficult for us to master. Despite
these artificial limitations, we find first results encouraging:
On one hand, delay is bound to decrease as both logic delay
and the number of logic blocks on the critical path reduce.
With a fairly rough routing delay model we observe a delay
reduction of up to 32%. On the other hand, the number of



logic blocks (all of similar area) consumed by the benchmark
circuits is also generally reduced; with one of our mapping
approaches, the area is reduced on average by 16%. Future
work will necessarily need to address placement and rout-
ing much more precisely than we had the chance to. Also,
other less conservative architectures may prove more advan-
tageous than those explored. Nevertheless, we think that our
first results are sufficiently encouraging for the approach to
deserve a closer inspection.

10. REFERENCES
[1] Altera Corporation. Stratix II Device Handbook, vols.

1 and 2. http://www.altera.com/literature/.

[2] J. H. Anderson and Q. Wang. Improving logic density
through synthesis-inspired architecture. In Proceedings
of the 19th International Conference on
Field-Programmable Logic and Applications, pages
105–11, Prague, Aug. 2009.

[3] J. H. Anderson and Q. Wang. Area-efficient FPGA
logic elements: Architecture and synthesis. In
Proceedings of the Asia and South Pacific Design
Automation Conference, pages 369–75, Yokohama,
Japan, Jan. 2011.

[4] Berkeley Logic Synthesis and Verification Group,
Berkeley, Calif. ABC: A System for Sequential
Synthesis and Verification, Feb. 2011. Release 10216,
http://www.eecs.berkeley.edu/~alanmi/abc/.

[5] V. Betz, J. Rose, and A. Marquardt. Architecture and
CAD for deep-submicron FPGAs. Kluwer Academic,
Boston, Mass., 1999.

[6] J. Cong and Y. Ding. An optimal technology mapping
algorithm for delay optimization in lookup-table based
FPGA designs. In Proceedings of the International
Conference on Computer Aided Design, pages 49–53,
Santa Clara, Calif., Nov. 1992.

[7] J. Cong and Y. Ding. On area/depth trade-off in
LUT-based FPGA technology mapping. IEEE
Transactions on Very Large Scale Integration (VLSI)
Systems, 2(2):137–48, June 1994.

[8] J. Cong and H. Huang. Technology mapping and
architecture evaluation for k/m- macrocell-based
FPGAs. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 10(1):3–23, Jan. 2005.

[9] J. Cong, C. Wu, and Y. Ding. Cut ranking and
pruning: Enabling a general and efficient FPGA
mapping solution. In Proceedings of the 7th
ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 29–35, Monterey,
Calif., Feb. 1999.

[10] J. R. Hauser and J. Wawrzynek. Garp: A MIPS
processor with a reconfigurable coprocessor. In
Proceedings of the 5th IEEE Symposium on
Field-Programmable Custom Computing Machines,
pages 12–21, Napa Valley, Calif., Apr. 1997.

[11] L. Hellerman. A catalog of three-variable Or-Invert
and And-Invert logical circuits. IEEE Transactions on
Electronic Computers, EC-12(3):198–223, June 1963.

[12] Y. Hu, S. Das, S. Trimberger, and L. He. Design,
synthesis, and evaluation of heterogeneous FPGA with
mixed LUTs and macro-gates. In Proceedings of the
International Conference on Computer Aided Design,
pages 188–93, San Jose, Calif., Nov. 2007.

[13] A. Kaviani and S. D. Brown. Hybrid FPGA
architecture. In Proceedings of the 4th ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pages 3–9, Monterey, Calif., Feb. 1996.

[14] J. L. Kouloheris and A. El Gamal. PLA-based FPGA
area versus cell granularity. In Proceedings of the
IEEE Custom Integrated Circuit Conference, pages
4.3.1–4.3.4, Boston, Mass., May 1992.

[15] Y. Kukimoto, R. Brayton, and P. Sawkary.
Delay-optimal technology mapping by DAG covering.
In Proceedings of the 35th Design Automation
Conference, pages 348–51, San Francisco, Calif., June
1998.

[16] I. Levin and R. Y. Pinter. Realizing expression graphs
using table-lookup FPGAs. In Proceedings of the 30th
Design Automation Conference, pages 306–11, Dallas,
Tex., June 1993.

[17] D. Lewis et al. The Stratix II logic and routing
architecture. In Proceedings of the 13th ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pages 14–20, Monterey, Calif., Feb. 2005.

[18] J. Luu, J. H. Anderson, and J. Rose. Architecture
description and packing for logic blocks with
hierarchy, modes and complex interconnect. In
Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays,
pages 227–36, Monterey, Calif., Feb. 2011.

[19] V. Manohararajah and S. Brown. Heuristics for area
minimization in LUT-based FPGA technology
mapping. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
25(11):2331–40, Nov. 2006.

[20] A. Mishchenko, S. Chatterjee, and R. Brayton.
DAG-aware AIG rewriting: A fresh look at
combinational logic synthesis. In Proceedings of the
43rd Design Automation Conference, pages 532–36,
San Francisco, Calif., July 2006.

[21] H. Parandeh-Afshar, P. Brisk, and P. Ienne. An
FPGA logic cell and carry chain configurable as a 6:2
or 7:2 compressor. ACM Transactions on
Reconfigurable Technology and Systems (TRETS),
2(3):19:1–19:42, Sept. 2009.

[22] M. Schlag, J. Kong, and P. K. Chan.
Routability-driven technology mapping for lookup
table-based FPGAs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, 13(1):13–26, Jan. 1994.

[23] H. Yang and D. F. Wong. Edge-map: Optimal
performance driven technology mapping for iterative
LUT based FPGA designs. In Proceedings of the
International Conference on Computer Aided Design,
pages 150–55, San Jose, Calif., Nov. 1994.

[24] S. Yang. Logic synthesis and optimization benchmarks
user guide, version 3.0. Technical report,
Microelectronics Center of North Carolina, Research
Triangle Park, N.C., Jan. 1991.

[25] Z. A. Ye, A. Moshovos, S. Hauck, and P. Banerjee.
CHIMAERA: A high-performance architecture with a
tightly-coupled reconfigurable functional unit. In
Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 225–35,
Vancouver, June 2000.


