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ABSTRACT 
Variable block size motion estimation (VBSME) in state-of-the-

art video coding standards is one of the key features which improves 
the coding efficiency significantly compared to the previous 
standards. VBSME hardware design is a challenging task due to its 
complexity. The processing power requirement for VBSME depends 
on many factors such as frame size, frame rate and search area. In 
video coding standards these features are allowed to vary, depending 
on the requirements of the application. In this paper, a scalable and 
low cost approach is proposed for designing the VBSME which 
allows us to tailor the architecture for different applications 
requirements and implementation targets efficiently. This approach 
can be used in redesigning of current VBSME architectures to 
improve their scalability and reduce their design costs. Moreover, as 
this technique is not block size dependent, it can be employed in 
designing future coding standards with different block sizes. 

INTRODUCTION 
H.264/AVC [11] is a standard capable of providing good video 

quality at substantially lower bit rates than previous standards with 
the expense of more complex hardware. Variable Block Size Motion 
Estimation (VBSME) is one of the key features of H.264 standard 
which improves video quality and coding efficiency. To perform 
Motion Estimation (ME), each frame is partitioned into blocks of 
pixels namely Macro Block (MB) and each MB is predicted from 
different corresponding MBs in the reference frame. The reference 
MB can be varied within a window in the reference frame. The 
reference MB which minimizes the Sum of Absolute Differences 
(SAD) of pixels is selected for the predication.  

For a given sub-block, let c(i, j) be the pixel at location i, j in the 
current frame, and r(i, j) be the same pixel in the reference frame. 
For a P×Q sub-block, the SAD value is:  
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(m, n) denotes the motion vector. A Motion Vector (MV) specifies the 
position of the selected reference MB compared to the position of the 
current MB. Previous standards typically use Fixed Block Size 
Motion Estimation (FBSME), while H.264 gives the ability to 
dynamically choose what block size will be used to represent the 
motion. When coding a video, the use of larger blocks can reduce the 
number of bits needed to represent the MVs, while use of smaller 
blocks can result in a smaller amount of prediction residual 
information to encode. In VBSME, each MB is divided into several 
overlapping blocks. For i.e. H.264 MB which is 16x16 pixel block is 
divided into seven sub-block types: 4×4, 4×8, 8×4, 8×8, 8×16, 16×8, 
and 16×16, as shown in Fig. 1. 

Due to the regular data dependency of motion estimation, systolic 
arrays are generally used for efficient implementation of FBSME and 
VBSME. A systolic array is composed of regular data processing 
elements (PE). Each PE shares data with its neighbors and 

more parallelism is obtained with fixed memory bandwidth. For low-
power portable devices, 1-dimensional (1D) systolic array 
implementations of VBSME have been proposed in the past [6, 7, 
12]; 2D arrays have also been proposed for high-end application 
domains, such as HDTV [1, 3], where the power budget is less of a 
concern; this paper focuses on the former. 

Generally FBSME architectures are extended to support VBSME. 
A FBSME engine is used to compute the SADs of primitive 
(smallest) sub-blocks within each MB. Primitive SADs can be 
combined to compute the non-primitive (larger) SADs. Thus, the key 
to an effective implementation of VBSME is to maximize the re-use 
of pre-computed SADs; however, doing so efficiently is a 
challenging task at the forefront of research on hardware 
implementations of VBSME. 

 
Motivation and Contribution 

We classify FBSME-based VBSME architectures into two 
distinct groups. In the first class, different PEs in parallel compute 
the different primitive SADs within a MB for a specific reference 
MB and the resulting SADs are stored in an external unit. These 
SADs are computed based on Eq. 1 and by a circuit which is called 
FB in this paper. Non primitive SADs are computed by an adder tree 
which re-uses the pre-computed primitive SADs. The intermediate 
registers and the adder tree is called SAD Merge Tree (SMT). This 
architecture is shown in Fig. 2(a). The SMT is connected to a central 
comparator for computing the minimum SAD for each sub-block 
size. The comparator unit keeps the minimum SAD of each sub-
block size which has been computed since that time.  

In the second class, as shown in Fig. 2(b), each PE in the array is 
augmented with a reuse unit (RU) that contains additional registers 
for storing previously computed SADs, and adders for computing 
non-primitive SADs. A SAD Bus Network (SBN) transmits SADs to a 
centralized comparator in order to compute the minimum SAD 
(SADMIN) for each sub-block size. The RU also contains a 
complicated controller unit that handles resource sharing, scheduling, 
and bus allocation. A precise and complex schedule is required to 
efficiently use the SBN and the comparators. In contrast to the first 
method, here, each PE exclusively computes the whole SADs of the 
MB with a specific reference position. Therefore, different PEs 
simultaneously compute the SADs of each MB considering different 

 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

 

 

 

 

Fig. 1. Different sub-blocks of a 16×16 MB for H.264/AVC.
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reference positions. The SAD of each sub-block is sent to the 
comparator unit whenever it is ready. As at each time slot, each PE 
finishes the SAD computation of a different sub-block, there should 
be enough bandwidth to send different SADs computed by different 
PEs to the comparator at the same time. 

Neither of these approaches is scalable. If more PEs are added to 
the design, the whole SMT or SBN must be redesigned, including the 
control mechanism. This can easily become unmanageable when the 
number of PEs increases substantially. On the other hand, adding 
more PEs imposes a significant hardware overhead due to the need to 
redesign either the SMT or SBN. Prior VBSME architectures have 
been optimized for a fixed set of features and implementation targets 
and are not generally scalable. To increase the processing power, a 
complete redesign of the architecture is required which will be very 
costly in several aspects.  

To address these concerns, this paper describes a systematic 
approach to design scalable VBSME architectures. The proposed 
approach is very cost efficient and can be used in the design of [5, 6, 
7, 12] VBSME engines. As a case study, this approach is used to 
design a one-dimensional (1-D) systolic array VBSME architecture 
for H.264/AVC. Compared to prior 1-D architectures, the 
architecture proposed here has a higher clock frequency, reduced 
macro block processing time (MBPT), and significantly reduced 
silicon area and power consumption.  

 
RELATED WORK 

The vast majority of architectures for VBSME in H.264/AVC are 
based on 1-D and 2-D systolic arrays. In this work, we focus on 1-D 
arrays. 2-D arrays, such as the one by Kim et al. [5] are beyond the 
scope of this work. 

One of the first 1-D VBSME architectures for H.264/AVC was 
presented by Yap and McCanny [12], and later improved upon by 
Song et al. [7]. Both of these architectures reuse the results of smaller 
sub-block computations with an irregular workflow inside each PE. 
Moreover, both architectures produce multiple SADs in the same 
clock cycle. As such, SAD bus networks are necessary to send these 
SADs to a centralized comparator.   

An improved architecture by Song et al. [6] employs a 1-D array 
and reuses SADs computed for smaller sub-blocks in the 
computation of SADs for larger ones. Each PE group consists of 16 
PEs and process 16 pixels per cycle. Consequently, this architecture 
has a high memory bandwidth requirement. Moreover, the PE group 
structure is complex and requires a complex controller; once again, a 
SAD bus network is required. 

Chen et al. [1] proposed several 2-D array architectures for 
VBSME. Both architectures use an SAD merge tree to compute 
larger SADs by reusing SADs computed by smaller 4×4 sub-blocks; 
this replaces the SAD bus network used by previous designs, but 
does not sidestep its general overhead. This circuit has since been 
fabricated for use in high-end HDTV applications [4]. A smaller 
SAD merging scheme was proposed by Cho et al. [2], but it still has 
considerable hardware overhead; moreover, it has an irregular 
structure and is not scalable. 

To date, we are aware of three FPGA implementations [4-5, 10] 
of VBSME. Wei and Gang [10] built a 1D systolic array VBSME 
architecture, similar to those described above, with 16 PEs, a 4-stage 
adder tree, and two flexible (16×16 bit) 8-bit register arrays. López et 
al. [5] designed a similar 1D array using SRAMs to implement the 
RUs shown in Fig. 2(b). Both of these architectures employ an SBN, 
and suffer from the affects outlined above. 

Li and Leong [4] proposed a bit-serial architecture for FPGA-
based VBSME. Their architecture achieves high throughput and a 
high clock frequency; however, it uses an SMT, and therefore has a 
complicated controller and is not easily scalable; the controller must 
be redesigned in order to add extra PEs. 

PROPOSED DESIGN SCHEME 
Overview 

 
Here, we propose a new architecture for VBMSE that does not 

require a SAD merge tree or a SAD bus network. We retain the RU 
from Fig. 2 (b), but place a comparison unit (CU) in each PE, along 
with the FB and RU. The CU includes a set of parallel comparators, 
followed by a set of registers. The CU finds minimum SADs 
generated by different PEs in a distributed manner, as shown in Fig.3. 
The basic idea is to propagate SADs computed by one PE to the next 
PE in the array. Similar to the second method discussed earlier in 
Fig.2 (b), each PE exclusively computes the SADs of all sub-blocks 
within a MB considering a specific reference MB. Therefore, 
different PEs in parallel compute the complete SADs within the same 
MB for different reference MBs. As each PE is one clock cycle prior 
to its neighbor PE, in consecutive cycles, SADs for a specific block 
considering different reference MBs are computed by the PEs in the 
array. Through careful scheduling, the SAD computed by the 
previous PE in the previous clock cycle can be compared with the 
SAD computed by the FB block in the current PE in the current clock 
cycle. If done properly, this eliminates the need for either a SAD 
merge tree or a SAD bus network.  

Smaller SADs, resulting from the comparisons, are propagated to 
the next PE in the array and the larger ones are thrown away. Using 
this strategy, each PE receives the SADMIN computed thus far, and 
compares it against its own generate SAD. This process repeats for 
each sub-block size within each MB; the result is the final SADMIN. 

 
Processing Element (PE) Design 

Fig. 4 (a) illustrates the new PE architecture. The FB unit, in the 
upper left, uses absolute value (ABS) units to compute the |C(k, l) – 
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R(i + k, j + l)| values of primitive blocks in parallel, which are then 
accumulated by an adder tree, producing a SAD. The ABS units, 
which compute the quantity |A – B|, are implemented using a circuit 
described by Vassiliadis et al. [9]. The adder tree is implemented 
using a compressor tree [3, 10].  

The RU, in the lower left, consists of a register file (RF) and an 
adder. The RF stores previously computed SADs for re-use purposes; 
SADs for smaller sub-blocks are then added together to produce 
SADs for larger sub-blocks. The CU, shown on the right, compare 
SADs stored in the current PE’s RF with SADs propagated from the 
previous PE. The smaller SAD is then stored into a register and 
propagated to the CU of the next PE during the next clock cycle.  

Fig. 4 (b) shows the 1-D systolic array organization of each PE. 
The Min SAD Register File (MSRF) at the end of the array stores the 
SADMIN values for each sub-block computed by the array. 

Under this scheme, there is no need for a SAD bus network or a 
SAD merge tree. The comparators are distributed inside the PEs, and 
SADMIN values for each sub-block can be read back into the array. 
When a SAD enters the chain from the MSRF, it passes through the 
PEs in consecutive cycles. Since there are generally more search 
regions than PEs in the array, for each MB, each PE must compute 
the SAD for multiple search regions. Consequently, it is necessary to 
compare a SAD for a search region computed previously with a SAD 
for the currently computed search region. This process repeats until 
SADs for all search regions have been computed and SADMIN has 
been found. 

This 1-D array architecture is also scalable. Additional PEs can be 
added to increase performance without any additional delay. The 
only area overhead is the area of the PE itself. In contrast, the size of 
a SAD merge tree would increase, and a SAD bus network might 
become wider and require a more complicated controller. 

A smart design of the CU improves the performance and reduces 
the number of registers in the RU. Let B be the number of different 
block sizes inside of each MB and T be the number of cycles 
required to compute each SAD. We define the transfer rate, Tr as 
follows: 

BTr
T
� �= � �� �

                                (2) 

Tr specifies the number of parallel comparators in each PE. Two 
cases are discussed separately, as follows: 
 
T < B: To achieve 100% utilization, each PE should process each 
MB within a search region in T cycles. Since B > T, Tr comparators 
are necessary in order to compare and transfer the B SADs to the 
next PE within T cycles. A larger RF in the RU is also necessary in 
order to store these SADs for re-use.  
 
T >= B: As long as each SAD is computed in a distinct clock cycle, 
one comparator suffices for the CU, and at most one SAD is 
transferred to the next PE per cycle. The size of the RF varies on the 
regularity of the dataflow of SAD generation, but the RF size is 
generally smaller than the case above. 

In both cases, if B SADs are generated uniformly across the T 
cycles, a relatively smaller RF size can be achieved in both the RU 
and CU. Moreover, regular dataflow can help simplify the controller. 
In general, if a SAD is stored in the register file for re-use, it is 
beneficial to generate the SADs with which it will be combined as 
quickly as possible, in order to free up the register to hold future 
SADs. 

SAD Computation Scheduling 

As discussed previous, the SAD computation of the primitive 
blocks is performed by the FB subsystem of the PE. Then, these 
computed SADs are used by the RU for computing the non-primitive 
SADs. Therefore, several registers are required for storing the 

primitive SADs. The RU unit can start to compute SADs of non-
primitive blocks as soon as the required primitive SADs comprising 
the non-primitive ones are ready. This will free registers for other 
primitive SADs that are computed. A proper scheduling of the SAD 
computation of primitives will lead to significant reduction in the 
number of registers. Here we propose a zig-zag pattern for this 
scheduling. This pattern is shown in Fig. 1. The proposed zig-zag 
sequence also helps to evenly distribute the SAD computation for 
larger sub-blocks among the whole cycles required for all SADs to 
be computed. This achieves a highly regular workflow, which, in turn, 
simplifies the design of the controller. The zigzag sequence is also 
used for the processing of non-primitive blocks which comprise 
larger blocks.  

 
CASE STUDY: H.264 VBSME ARCHITECTURE 

The proposed approach can be generalized to any type of VBSME 
algorithm. For the experiments, we implement VBSME of 
H.264/AVC based on the aforementioned approach. In the case of 
H.264/AVC, B = 41, and the architecture designed here computes 
each SAD in T = 64 cycles. 

The PE architecture is similar in principle to Fig. 4 (a). Four PEs 
are placed in the array. Each PE concurrently processes four pixels of 
each primitive block. Four cycles are required to compute the SAD 
of each primitive block, and 64 cycles are required to process all 
primitive blocks. The computation of SADs for the largest sub-
blocks in the current MB is interleaved with the computation of the 
SADs of the first primitive blocks in the subsequent MB. The 
register-file contains 11 registers. 

The zig-zag pattern also helps to evenly distribute the SAD 
computation for larger sub-blocks among the 64 cycles. This 
achieves a highly regular workflow, which, in turn, simplifies the 
design of the controller. The 64-cycle makespan can be divided into 4 
identical sub-spans of 16 cycles. As such, the controller is 
implemented as a 6-bit saturating sequential counter.  

 

(b) 

(a) 

CU output(s) of 
Previous PE 

Σ

C S ABS1 ABS4 …

Pix Ref Pix Ref 

+

FB 

… 

 

M
em

or
y  

Ref0 

Ref1 
Pixel 

FB 

RU 
CU 

FB 

RU 
CU 

Fig. 4. Proposed PE architecture (a) and array organization (b). 

CU 

RU 

MIN Reg

Regfile 

MIN SAD Regfile 

273



VLSI Implementation 

The VBSME architecture was modeled in VHDL and synthesized 
using Synopsys Design Compiler and Artisan Memory Compiler. 
The design was realized using 0.13�m and 0.18�m CMOS standard 
cell libraries to compare to prior work that has been published using 
these technologies. The 0.13�m design contains 18K gates and runs 
at 400MHz; the 0.18�m design contains 12K gates and runs at 285 
MHz. 

Let SR be the search range, C be the number of cycles required 
per MB, TCLK be the clock period, and N be the number of PEs in the 
array. Then MB Processing Time (MBPT) is: 

CLKSR C TMBPT
N

× ×= ,   (3) 
under the assumption of 100% PE utilization, which is satisfied by 
this architecture. 

Table 1 compares our VBSME architecture to comparable 1-D 
systolic array architectures that have been published in the past; the 
numbers for our competitors are taken from the references. With four 
PEs, compared to 16 used by others, our VBSME architecture has a 
lower MacroBlock Processing Time (MBPT), operates at a higher 
frequency, and has a smaller gate count. The reason for this success 
is the elimination of the SAD bus network and the ability to use 
fewer PEs. Yap and McCanny’s design [12] consumed 
approximately 3× more power than ours. The papers by Song et al. 
[6, 7] did not report power consumption. 

FPGA Implementation 

In this section, we compare our VBSME architecture with several 
other FPGA designs that fully support H.264/AVC.  

The architectures of Li and Leong [4] and López et al. [5] were 
synthesized on Virtex 2 series FPGAs. Table 2 shows a comparison 
between our architecture, also synthesized on a Virtex 2, and both of 
these. Among these architectures, ours was the smallest in terms of 
LUT count, and it offers the highest throughput-per LUT. In terms of 
throughput and clock frequency, however, the bit-serial architecture 
of Li and Leong [4] achieves a higher clock frequency and 
throughput. Also Table 2 compares our architecture to that of Wei 
and Gang [10], which was synthesized on the APEX series FPGA. 
Their architecture achieves greater throughput and runs at a higher 
clock frequency; our architecture, in contrast, is much smaller and 
our throughput-per-LUT is approximately 2.5× greater than theirs. 
Both [4, 10] have a big SMT in their designs which makes them non-
scalable and it is very costly to add extra PEs to their architectures.   

Table 3 shows the scalability study of the architecture on the 
Stratix II, increasing the number of PEs from 4 to 8. For each PE that 
was added, we observed frequency degradation from 1 to 6 MHz, 
which is to be expected for FPGAs; due to omnipresent routing 
delays in FPGAs, frequency degradation is unavoidable. 

CONCLUSION 
In this paper, a scalable design scheme for variable block size 

motion estimation (VBSME) was proposed. Using the proposed 
design scheme we showed that the SAD bus network and SAD 
merge tree which are used in the conventional VBSME architectures 
can be eliminated. This reduces the design costs and increases the 
scalability of VBSME architectures; the processing power of such 
architectures can be improved by adding more PEs with minimum 
delay and area overhead and also without having to redesign the 
whole architecture.  Using the proposed methodology, we designed 
the H.264/VAC VBSME. In the presented circuit, due to the 
elimination of the SAD bus network, a significant reduction in area 
and power consumption was obtained and the performance was 

improved by localizing the communication between the comparators 
within each PE.  
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Throughput/LUT 5.59 0.155 6.7 0.99 2.5 

PE Count Frequency (MHz) Area (ALMs) 
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6 
7 
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Table 1. Comparison among different 1-D systolic array VLSI 
implementations of VBSME in H.264/AVC.
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