
Scalable and Low Cost Design Approach for
Variable Block Size Motion Estimation (VBSME)

H. Parandeh-Afshar, P. Brisk, and P. Ienne
Ecole Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

CH-1015 Lausanne, Switzerland
Email: {hadi.parandehafshar, philip.brisk, paolo.ienne}@epfl.ch

ABSTRACT
Variable block size motion estimation (VBSME) in state-of-the-

art video coding standards is one of the key features which improves
the coding efficiency significantly compared to the previous
standards. VBSME hardware design is a challenging task due to its
complexity. The processing power requirement for VBSME depends
on many factors such as frame size, frame rate and search area. In
video coding standards these features are allowed to vary, depending
on the requirements of the application. In this paper, a scalable and
low cost approach is proposed for designing the VBSME which
allows us to tailor the architecture for different applications
requirements and implementation targets efficiently. This approach
can be used in redesigning of current VBSME architectures to
improve their scalability and reduce their design costs. Moreover, as
this technique is not block size dependent, it can be employed in
designing future coding standards with different block sizes.

INTRODUCTION
H.264/AVC [11] is a standard capable of providing good video

quality at substantially lower bit rates than previous standards with
the expense of more complex hardware. Variable Block Size Motion
Estimation (VBSME) is one of the key features of H.264 standard
which improves video quality and coding efficiency. To perform
Motion Estimation (ME), each frame is partitioned into blocks of
pixels namely Macro Block (MB) and each MB is predicted from
different corresponding MBs in the reference frame. The reference
MB can be varied within a window in the reference frame. The
reference MB which minimizes the Sum of Absolute Differences
(SAD) of pixels is selected for the predication.

For a given sub-block, let c(i, j) be the pixel at location i, j in the
current frame, and r(i, j) be the same pixel in the reference frame.
For a P×Q sub-block, the SAD value is:

() () ()
Q 1P 1

P,Q
i 0 j 0

SAD m,n c i, j r i m, j n
−−

= =

= − + +�� (1)

(m, n) denotes the motion vector. A Motion Vector (MV) specifies the
position of the selected reference MB compared to the position of the
current MB. Previous standards typically use Fixed Block Size
Motion Estimation (FBSME), while H.264 gives the ability to
dynamically choose what block size will be used to represent the
motion. When coding a video, the use of larger blocks can reduce the
number of bits needed to represent the MVs, while use of smaller
blocks can result in a smaller amount of prediction residual
information to encode. In VBSME, each MB is divided into several
overlapping blocks. For i.e. H.264 MB which is 16x16 pixel block is
divided into seven sub-block types: 4×4, 4×8, 8×4, 8×8, 8×16, 16×8,
and 16×16, as shown in Fig. 1.

Due to the regular data dependency of motion estimation, systolic
arrays are generally used for efficient implementation of FBSME and
VBSME. A systolic array is composed of regular data processing
elements (PE). Each PE shares data with its neighbors and

more parallelism is obtained with fixed memory bandwidth. For low-
power portable devices, 1-dimensional (1D) systolic array
implementations of VBSME have been proposed in the past [6, 7,
12]; 2D arrays have also been proposed for high-end application
domains, such as HDTV [1, 3], where the power budget is less of a
concern; this paper focuses on the former.

Generally FBSME architectures are extended to support VBSME.
A FBSME engine is used to compute the SADs of primitive
(smallest) sub-blocks within each MB. Primitive SADs can be
combined to compute the non-primitive (larger) SADs. Thus, the key
to an effective implementation of VBSME is to maximize the re-use
of pre-computed SADs; however, doing so efficiently is a
challenging task at the forefront of research on hardware
implementations of VBSME.

Motivation and Contribution

We classify FBSME-based VBSME architectures into two
distinct groups. In the first class, different PEs in parallel compute
the different primitive SADs within a MB for a specific reference
MB and the resulting SADs are stored in an external unit. These
SADs are computed based on Eq. 1 and by a circuit which is called
FB in this paper. Non primitive SADs are computed by an adder tree
which re-uses the pre-computed primitive SADs. The intermediate
registers and the adder tree is called SAD Merge Tree (SMT). This
architecture is shown in Fig. 2(a). The SMT is connected to a central
comparator for computing the minimum SAD for each sub-block
size. The comparator unit keeps the minimum SAD of each sub-
block size which has been computed since that time.

In the second class, as shown in Fig. 2(b), each PE in the array is
augmented with a reuse unit (RU) that contains additional registers
for storing previously computed SADs, and adders for computing
non-primitive SADs. A SAD Bus Network (SBN) transmits SADs to a
centralized comparator in order to compute the minimum SAD
(SADMIN) for each sub-block size. The RU also contains a
complicated controller unit that handles resource sharing, scheduling,
and bus allocation. A precise and complex schedule is required to
efficiently use the SBN and the comparators. In contrast to the first
method, here, each PE exclusively computes the whole SADs of the
MB with a specific reference position. Therefore, different PEs
simultaneously compute the SADs of each MB considering different

Fig. 1. Different sub-blocks of a 16×16 MB for H.264/AVC.

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

32 33

34 35

38 39

36

37

40

4×4 4×8 8×8

16×8 8×16 16×16

24
26

25
27

28
30

29
31

8×4

zig-zag pattern

978-1-4244-2782-6/09/$25.00 ©2009 IEEE 271

reference positions. The SAD of each sub-block is sent to the
comparator unit whenever it is ready. As at each time slot, each PE
finishes the SAD computation of a different sub-block, there should
be enough bandwidth to send different SADs computed by different
PEs to the comparator at the same time.

Neither of these approaches is scalable. If more PEs are added to
the design, the whole SMT or SBN must be redesigned, including the
control mechanism. This can easily become unmanageable when the
number of PEs increases substantially. On the other hand, adding
more PEs imposes a significant hardware overhead due to the need to
redesign either the SMT or SBN. Prior VBSME architectures have
been optimized for a fixed set of features and implementation targets
and are not generally scalable. To increase the processing power, a
complete redesign of the architecture is required which will be very
costly in several aspects.

To address these concerns, this paper describes a systematic
approach to design scalable VBSME architectures. The proposed
approach is very cost efficient and can be used in the design of [5, 6,
7, 12] VBSME engines. As a case study, this approach is used to
design a one-dimensional (1-D) systolic array VBSME architecture
for H.264/AVC. Compared to prior 1-D architectures, the
architecture proposed here has a higher clock frequency, reduced
macro block processing time (MBPT), and significantly reduced
silicon area and power consumption.

RELATED WORK

The vast majority of architectures for VBSME in H.264/AVC are
based on 1-D and 2-D systolic arrays. In this work, we focus on 1-D
arrays. 2-D arrays, such as the one by Kim et al. [5] are beyond the
scope of this work.

One of the first 1-D VBSME architectures for H.264/AVC was
presented by Yap and McCanny [12], and later improved upon by
Song et al. [7]. Both of these architectures reuse the results of smaller
sub-block computations with an irregular workflow inside each PE.
Moreover, both architectures produce multiple SADs in the same
clock cycle. As such, SAD bus networks are necessary to send these
SADs to a centralized comparator.

An improved architecture by Song et al. [6] employs a 1-D array
and reuses SADs computed for smaller sub-blocks in the
computation of SADs for larger ones. Each PE group consists of 16
PEs and process 16 pixels per cycle. Consequently, this architecture
has a high memory bandwidth requirement. Moreover, the PE group
structure is complex and requires a complex controller; once again, a
SAD bus network is required.

Chen et al. [1] proposed several 2-D array architectures for
VBSME. Both architectures use an SAD merge tree to compute
larger SADs by reusing SADs computed by smaller 4×4 sub-blocks;
this replaces the SAD bus network used by previous designs, but
does not sidestep its general overhead. This circuit has since been
fabricated for use in high-end HDTV applications [4]. A smaller
SAD merging scheme was proposed by Cho et al. [2], but it still has
considerable hardware overhead; moreover, it has an irregular
structure and is not scalable.

To date, we are aware of three FPGA implementations [4-5, 10]
of VBSME. Wei and Gang [10] built a 1D systolic array VBSME
architecture, similar to those described above, with 16 PEs, a 4-stage
adder tree, and two flexible (16×16 bit) 8-bit register arrays. López et
al. [5] designed a similar 1D array using SRAMs to implement the
RUs shown in Fig. 2(b). Both of these architectures employ an SBN,
and suffer from the affects outlined above.

Li and Leong [4] proposed a bit-serial architecture for FPGA-
based VBSME. Their architecture achieves high throughput and a
high clock frequency; however, it uses an SMT, and therefore has a
complicated controller and is not easily scalable; the controller must
be redesigned in order to add extra PEs.

PROPOSED DESIGN SCHEME
Overview

Here, we propose a new architecture for VBMSE that does not

require a SAD merge tree or a SAD bus network. We retain the RU
from Fig. 2 (b), but place a comparison unit (CU) in each PE, along
with the FB and RU. The CU includes a set of parallel comparators,
followed by a set of registers. The CU finds minimum SADs
generated by different PEs in a distributed manner, as shown in Fig.3.
The basic idea is to propagate SADs computed by one PE to the next
PE in the array. Similar to the second method discussed earlier in
Fig.2 (b), each PE exclusively computes the SADs of all sub-blocks
within a MB considering a specific reference MB. Therefore,
different PEs in parallel compute the complete SADs within the same
MB for different reference MBs. As each PE is one clock cycle prior
to its neighbor PE, in consecutive cycles, SADs for a specific block
considering different reference MBs are computed by the PEs in the
array. Through careful scheduling, the SAD computed by the
previous PE in the previous clock cycle can be compared with the
SAD computed by the FB block in the current PE in the current clock
cycle. If done properly, this eliminates the need for either a SAD
merge tree or a SAD bus network.

Smaller SADs, resulting from the comparisons, are propagated to
the next PE in the array and the larger ones are thrown away. Using
this strategy, each PE receives the SADMIN computed thus far, and
compares it against its own generate SAD. This process repeats for
each sub-block size within each MB; the result is the final SADMIN.

Processing Element (PE) Design

Fig. 4 (a) illustrates the new PE architecture. The FB unit, in the
upper left, uses absolute value (ABS) units to compute the |C(k, l) –

SB0,R1

SB1,R0 SB2,R0 SB3,R0

SB1,R1 SB2,R1 SB3,R1

SB0,R2 SB1,R2 SB2,R3

SB0,R0

PE2

Ti Ti+1 Ti+2 Ti+3

Ti : Time slot i SBi,Ri : SAD of Block i w.r.t. Reference j

PE0

PE1

 Ti+4

MIN MIN MIN MIN

MIN MIN MIN

MIN MIN MIN

MIN

MIN

MIN MIN

MIN

Fig. 3. Propagation of SADsMIN through PEs. Each PEs chain
(highlighted) propagates the SADMIN of a different block.

(a)

(b)

Fig. 2. Classification of 1-D VBSMEs.

 SAD BUS
 NETWORK

FB FB FB
RU RU RU

MIN
MIN
MIN

…..

MIN

 SAD MERGE
 TREE

FB FB FB

MIN
MIN

…..

272

R(i + k, j + l)| values of primitive blocks in parallel, which are then
accumulated by an adder tree, producing a SAD. The ABS units,
which compute the quantity |A – B|, are implemented using a circuit
described by Vassiliadis et al. [9]. The adder tree is implemented
using a compressor tree [3, 10].

The RU, in the lower left, consists of a register file (RF) and an
adder. The RF stores previously computed SADs for re-use purposes;
SADs for smaller sub-blocks are then added together to produce
SADs for larger sub-blocks. The CU, shown on the right, compare
SADs stored in the current PE’s RF with SADs propagated from the
previous PE. The smaller SAD is then stored into a register and
propagated to the CU of the next PE during the next clock cycle.

Fig. 4 (b) shows the 1-D systolic array organization of each PE.
The Min SAD Register File (MSRF) at the end of the array stores the
SADMIN values for each sub-block computed by the array.

Under this scheme, there is no need for a SAD bus network or a
SAD merge tree. The comparators are distributed inside the PEs, and
SADMIN values for each sub-block can be read back into the array.
When a SAD enters the chain from the MSRF, it passes through the
PEs in consecutive cycles. Since there are generally more search
regions than PEs in the array, for each MB, each PE must compute
the SAD for multiple search regions. Consequently, it is necessary to
compare a SAD for a search region computed previously with a SAD
for the currently computed search region. This process repeats until
SADs for all search regions have been computed and SADMIN has
been found.

This 1-D array architecture is also scalable. Additional PEs can be
added to increase performance without any additional delay. The
only area overhead is the area of the PE itself. In contrast, the size of
a SAD merge tree would increase, and a SAD bus network might
become wider and require a more complicated controller.

A smart design of the CU improves the performance and reduces
the number of registers in the RU. Let B be the number of different
block sizes inside of each MB and T be the number of cycles
required to compute each SAD. We define the transfer rate, Tr as
follows:

BTr
T
� �= � �� �

 (2)

Tr specifies the number of parallel comparators in each PE. Two
cases are discussed separately, as follows:

T < B: To achieve 100% utilization, each PE should process each
MB within a search region in T cycles. Since B > T, Tr comparators
are necessary in order to compare and transfer the B SADs to the
next PE within T cycles. A larger RF in the RU is also necessary in
order to store these SADs for re-use.

T >= B: As long as each SAD is computed in a distinct clock cycle,
one comparator suffices for the CU, and at most one SAD is
transferred to the next PE per cycle. The size of the RF varies on the
regularity of the dataflow of SAD generation, but the RF size is
generally smaller than the case above.

In both cases, if B SADs are generated uniformly across the T
cycles, a relatively smaller RF size can be achieved in both the RU
and CU. Moreover, regular dataflow can help simplify the controller.
In general, if a SAD is stored in the register file for re-use, it is
beneficial to generate the SADs with which it will be combined as
quickly as possible, in order to free up the register to hold future
SADs.

SAD Computation Scheduling

As discussed previous, the SAD computation of the primitive
blocks is performed by the FB subsystem of the PE. Then, these
computed SADs are used by the RU for computing the non-primitive
SADs. Therefore, several registers are required for storing the

primitive SADs. The RU unit can start to compute SADs of non-
primitive blocks as soon as the required primitive SADs comprising
the non-primitive ones are ready. This will free registers for other
primitive SADs that are computed. A proper scheduling of the SAD
computation of primitives will lead to significant reduction in the
number of registers. Here we propose a zig-zag pattern for this
scheduling. This pattern is shown in Fig. 1. The proposed zig-zag
sequence also helps to evenly distribute the SAD computation for
larger sub-blocks among the whole cycles required for all SADs to
be computed. This achieves a highly regular workflow, which, in turn,
simplifies the design of the controller. The zigzag sequence is also
used for the processing of non-primitive blocks which comprise
larger blocks.

CASE STUDY: H.264 VBSME ARCHITECTURE

The proposed approach can be generalized to any type of VBSME
algorithm. For the experiments, we implement VBSME of
H.264/AVC based on the aforementioned approach. In the case of
H.264/AVC, B = 41, and the architecture designed here computes
each SAD in T = 64 cycles.

The PE architecture is similar in principle to Fig. 4 (a). Four PEs
are placed in the array. Each PE concurrently processes four pixels of
each primitive block. Four cycles are required to compute the SAD
of each primitive block, and 64 cycles are required to process all
primitive blocks. The computation of SADs for the largest sub-
blocks in the current MB is interleaved with the computation of the
SADs of the first primitive blocks in the subsequent MB. The
register-file contains 11 registers.

The zig-zag pattern also helps to evenly distribute the SAD
computation for larger sub-blocks among the 64 cycles. This
achieves a highly regular workflow, which, in turn, simplifies the
design of the controller. The 64-cycle makespan can be divided into 4
identical sub-spans of 16 cycles. As such, the controller is
implemented as a 6-bit saturating sequential counter.

(b)

(a)

CU output(s) of
Previous PE

Σ

C S ABS1 ABS4 …

Pix Ref Pix Ref

+

FB

…

M
em

or
y

Ref0

Ref1
Pixel

FB

RU
CU

FB

RU
CU

Fig. 4. Proposed PE architecture (a) and array organization (b).

CU

RU

MIN Reg

Regfile

MIN SAD Regfile

273

VLSI Implementation

The VBSME architecture was modeled in VHDL and synthesized
using Synopsys Design Compiler and Artisan Memory Compiler.
The design was realized using 0.13�m and 0.18�m CMOS standard
cell libraries to compare to prior work that has been published using
these technologies. The 0.13�m design contains 18K gates and runs
at 400MHz; the 0.18�m design contains 12K gates and runs at 285
MHz.

Let SR be the search range, C be the number of cycles required
per MB, TCLK be the clock period, and N be the number of PEs in the
array. Then MB Processing Time (MBPT) is:

CLKSR C TMBPT
N

× ×= , (3)
under the assumption of 100% PE utilization, which is satisfied by
this architecture.

Table 1 compares our VBSME architecture to comparable 1-D
systolic array architectures that have been published in the past; the
numbers for our competitors are taken from the references. With four
PEs, compared to 16 used by others, our VBSME architecture has a
lower MacroBlock Processing Time (MBPT), operates at a higher
frequency, and has a smaller gate count. The reason for this success
is the elimination of the SAD bus network and the ability to use
fewer PEs. Yap and McCanny’s design [12] consumed
approximately 3× more power than ours. The papers by Song et al.
[6, 7] did not report power consumption.

FPGA Implementation

In this section, we compare our VBSME architecture with several
other FPGA designs that fully support H.264/AVC.

The architectures of Li and Leong [4] and López et al. [5] were
synthesized on Virtex 2 series FPGAs. Table 2 shows a comparison
between our architecture, also synthesized on a Virtex 2, and both of
these. Among these architectures, ours was the smallest in terms of
LUT count, and it offers the highest throughput-per LUT. In terms of
throughput and clock frequency, however, the bit-serial architecture
of Li and Leong [4] achieves a higher clock frequency and
throughput. Also Table 2 compares our architecture to that of Wei
and Gang [10], which was synthesized on the APEX series FPGA.
Their architecture achieves greater throughput and runs at a higher
clock frequency; our architecture, in contrast, is much smaller and
our throughput-per-LUT is approximately 2.5× greater than theirs.
Both [4, 10] have a big SMT in their designs which makes them non-
scalable and it is very costly to add extra PEs to their architectures.

Table 3 shows the scalability study of the architecture on the
Stratix II, increasing the number of PEs from 4 to 8. For each PE that
was added, we observed frequency degradation from 1 to 6 MHz,
which is to be expected for FPGAs; due to omnipresent routing
delays in FPGAs, frequency degradation is unavoidable.

CONCLUSION
In this paper, a scalable design scheme for variable block size

motion estimation (VBSME) was proposed. Using the proposed
design scheme we showed that the SAD bus network and SAD
merge tree which are used in the conventional VBSME architectures
can be eliminated. This reduces the design costs and increases the
scalability of VBSME architectures; the processing power of such
architectures can be improved by adding more PEs with minimum
delay and area overhead and also without having to redesign the
whole architecture. Using the proposed methodology, we designed
the H.264/VAC VBSME. In the presented circuit, due to the
elimination of the SAD bus network, a significant reduction in area
and power consumption was obtained and the performance was

improved by localizing the communication between the comparators
within each PE.

REFERENCES
[1] C-Y. Chen, et al., “Analysis and architecture design of variable block

size motion estimation for H.264/AVC”, IEEE Trans. Circuits and
Systems—I: Regular Papers, Vol. 53, No. 3, Feb., 2006, 578-593.

[2] C.Y. Cho, S.Y Huang, J.S. Wong, “An Embedded Merging Scheme for
H.264/AVC Motion estimation,” IEEE Int. Conf on Image Processing,
vol. 3, pp. 1016–1019, Sept, 2005.

[3] Y-W. Huang, et al. “A 1.3TOPS H.264/AVC Single-Chip Encoder for
HDTV Applications”, IEEE International Solid State Circuits
Conference, San Francisco, CA, USA, February 6-10, 2005, 128-129,
and 588.

[4] B. M.H. Li, and P. H.W. Leong, “FPGA-based MSB-first bit-serial
variable block size motion estimation processor,” Proc. FPT, pp. 165-
172, Dec. 2006.

[5] S. López, F. Tobajas, A. Villar, V. de Armas, J. F. Lopez, and R.
Sarmiento, “Low cost efficient architecture for H.264 motion
estimation,” in Proc. of the IEEE Int. Symp. Circuits and Systems, vol.
1, May, 2005, pp. 412-415.

[6] Y. Song, Z. Liu, S. Goto, and T. Ikenaga, “Scalable VLSI Architecture
for Variable Block Size Integer Motion Estimation in H.264/AVC”,
IEICE Trans. Fundamentals, Vol. E89, No. 4, April, 2006, 979-988.

[7] Y. Song, Z. Liu, T. Ikenaga, and S. Goto, “A VLSI Architecture for
Variable Block Size Motion Estimation in H.264/AVC with Low Cost
Memory Organization”, IEICE Trans. Fundamentals, Vol. E89, No. 12,
December, 2006, 3594-3601.

[8] S. Vassiliadis, E. A. Hakkennes, J. S. S. M. Wong, and G. G. Pechanek,
“The Sum-Absolute-Difference Motion Estimation Accelerator”, 24th
Conference on EUROMICRO, Vol. 2, Vesteras, Sweden, August 25-27,
1998, 20559-20566.

[9] C. S. Wallace, “A Suggestion for a Fast Multiplier”, IEEE Trans.
Electronic Computers, Vol. 13, 1964, 14-17.

[10] C. Wei, M.Z. Gang, “A Novel SAD Computing Hardware Architecture
for Variable-size Block Motion Estimation and Its Implementation with
FPGA,” on Proc. 5th Intl. Conf. On ASIC, vol.2, pp. 950-953, Oct.
2003.

[11] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra, “Overview
of the H.264/AVC Video Coding Standard”, IEEE Trans. Circuits and
Systems for Video Technology, Vol. 13, No. 7, July, 2003, 560-576.

[12] S. Y. Yap, and J. V. McCanny, “A VLSI Architecture for Variable
Block Size Video Motion Estimation,” IEEE Trans. On Circuits and
Systems—II: Express Briefs, Vol. 51, No. 7, July, 2004, 384-389.

Table 2. Comparison among different 1-D systolic array FPGA
implementations of VBSME in H.264/AVC.

Table 3. Stratix II scalability study.

Architecture
Virtex-II APEX

[4] [5] Ours [10] Ours

Area (LUTs) 3345 19576 1431 7381 1878

Freq. (MHz) 340 51.49 154 120 75

Throughput
(MB[16x16]/Sec)

18674

3036

9615

7324

4695

Throughput/LUT 5.59 0.155 6.7 0.99 2.5

PE Count Frequency (MHz) Area (ALMs)
4
5
6
7
8

255
253
252
251
245

752
929

1102
1283
1465

Table 1. Comparison among different 1-D systolic array VLSI
implementations of VBSME in H.264/AVC.

0.13 �m 0.18 �m

[12] Ours [6] [7] Ours
PEs
MBPT(�s)
Freq. (MHz)
K-Gate Count
Power (mw)

16
13.9
294
61
24

4
10.2
400
18
7.7

16
17.4
266
51.7

-

16
17.9
228
21
-

4
14.3
285
12
-

274

	Copyright
	Words from Conference Chair
	Foreword
	Table of Content
	JOINT PLENARY
	JK1_The Future of Semiconductor Industry - A Foundry’s Perspective
	JK2_From Living Faster to Living Better

	DAT PLENARY
	K1_Microscopic wireless – exploring the boundaries of ultra low-power design
	K2_Semiconductor Industry Prosperity Trough Deeper Horizontal Collaborations

	Industry Session 1 : Building the Next-generation High-Performance CPU
	IS11_Challenges in Microprocessor Physical and Power Management Design
	IS12_Flow Enhancements for Low Power Design Implementations
	IS13_Implementation and Verification Practices of DVFS and Power Gating
	IS14_Toward the Integration of Incremental Physical Synthesis Optimizations
	IS15_The Evolution of Interconnect Management in Physical Synthesis

	Industry Session 2: Breaking through the chip-to-chip interconnect wall
	IS21_The Future of Electrical I/O for Microprocessors (Invited)
	IS22_Communication in macrochips using silicon photonics for high-performance and low-energy computing
	IS23_Past, present and Future of RF Design Wireless Communication
	IS24_Enabling Technologies for Multi-Chip Integration using Proximity Communication

	Session W1: Regulators
	W11_A Compact Rail-to-Rail Buffer with Current Positive-Feedback for LCD Source Driver
	W12_New Design Method of Low Power Over Current Protection Circuit for Low Dropout Regulator
	W13_Digital PWM Controller for SIDO Switching Converter with Time-Multiplexing Scheme

	Session W2: Testing I
	W21_Static and Dynamic Test Power Reduction in Scan-Based Testing
	W22_iScan: Indirect-Access Scan Test over HOY Test Platform
	W23_On Calculation of Delay Range in Fault Simulation for Test Cubes

	Session W3: Memory and Communication Architectures for SoCs
	W31_Allocation of Scratch-Pad Memory in Priority-Based Multi-Task Systems
	W32_Fault-tolerant Router with Built-in Self-test/Self-diagnosis and Fault-isolation Circuits for 2D-mesh Based Chip Multiprocessor Systems
	W33_On Chip Communication-Architecture Based Thermal Management for SoCs

	Session W4: RF & Millimeter-Wave Design
	W41_A Wireless Power Telemetry with Self-Calibrated Resonant Frequency
	W42_Glass Carrier SOP Technology Demonstrated by Design of a 19 GHz 3.8 dB CMOS LNA
	W43_Low-Power 48-GHz CMOS VCO and 60-GHz CMOS LNA for 60-GHz Dual-Conversion Receiver
	W44_Miniature 60-GHz-Band Bandpass Filter with 2.55-dB Insertion-Loss Using Standard 0.13μm CMOS Technology

	Special Session 1: Electronic System Level
	S11_Virtual Prototyping Increases Productivity - A case study (Invited)
	S12_Refinement and Reuse of TLM 2.0 Models: the key for ESL success
	S13_Adaptive Simulated Annealer for High Level Synthesis Design Space Exploration

	Session W5: Physical Design and Manufacturability
	W51_Circuit Acyclic Clustering with Input/Output Constraints and Applications
	W52_A Detailed Router for Hierarchical FPGAs Based on Simulated Evolution
	W53_A Bias-Driven Approach for Automated Design of Operational Amplifiers
	W54_Coupling- and ECP-Aware Metal Fill for Improving Layout Uniformity in Copper CMP

	Session W6: Low-Power Analog Techniques
	W61_Visual Prostheses: Current Progress and Challenges
	W62_A Current Compensated Reference Oscillator
	W63_Improved SPICE Macromodel of Phase Change Random Access Memory

	Special Session 2: mm-Wave Circuit and VCOs
	S21_Transforming RF and mm-Wave CMOS Circuits (Invited)
	S22_Low-Voltage Transformer-Based CMOS VCOs and Frequency Dividers
	S23_A 57-GHz CMOS VCO with 185.3% Tuning-Range Enhancement Using Tunable LC Source-Degeneration

	Session W7: Digital Circuit Techniques
	W71_Novel FFT Processor with Parallel-In-Parallel-Out in Normal Order
	W72_Cost Efficient FEQ Implementation for IEEE 802.16a OFDM Transceiver
	W73_A Low-Jitter All-Digital Phase-Locked Loop Using a Suppressive Digital Loop Filter
	W74_Timing Control Degradation and nbti/pbti Tolerant Design for Write-Replica Circuit in Nanoscale CMOS SRAM

	Session T1: Modern Synthesis and Verification
	T11_Logic Synthesis for Better Than Worst-case Designs
	T12_Leakage Reduction, Variation Compensation Using Partition-based Tunable Body-Biasing Techniques
	T13_Rewired Retiming for Free Flip-flop Reductions without Delay Penalty

	Special Session 3 : Silicon Debugging / Design Validation
	S31_Exploiting advanced fault localization methods for Yield & Reliability Learning on SoCs (Invited)
	S32_A Network-on-Chip Monitoring Infrastructure for Communication-centric Debug of Embedded Multi-Processor SoCs (invited)
	S33_Software-enabled Design Visibility Enhancement for Failure Analysis Process Improvement

	Session T2: Baseband and FEC Circuits
	T21_VLSI Design of Spread Spectrum Encoding Low Power RFID Tag Baseband Processor
	T22_High-Convergence-Speed Low-Computation-Complexity SVD Algorithm for MIMO-OFDM Systems
	T23_Design of High-Speed Errors-and-Erasures Reed-Solomon Decoders for Multi-Mode Applications
	T24_An Area-Efficient Parallel Turbo Decoder Based on Contention Free Algorithm

	Session T3: Data Converters
	T31_A 6-GS/s, 6-bit, At-speed Testable ADC and DAC Pair in 0.13μm CMOS
	T32_A 6-bit 1GS/s Low-Power Flash ADC
	T33_A 6-bit 220-MS/s Time-Interleaving SAR ADC in 0.18-μm Digital CMOS Process

	Session T4: PLL and Divider
	T41_A Frequency Synthesizer for Mode-1 MB-OFDM UWB applications
	T42_Implementation of 6-Port 3D Transformer in Injection-Locked Frequency Divider
	T43_An 18.7mW 10-GHz Phase-Locked Loop Circuit in 0.13-μm CMOS

	Session T5: SoC Design Techniques and Amplications
	T51_A High-Troughput Radix-4 Log-MAP Decoder With Low Complexity LLR Architecture
	T52_Efficient Two-Layered Cycle-Accurate Modeling Technique for Processor Family with Same Instruction Set Architecture
	T53_Content-Aware Energy Prediction for Video Streaming in Mobile Devices

	Session T6: ADC & Clocking
	T61_A Continuous-Time Delta-Sigma Modulator Using Feedback Resistors
	T62_A Third-Order Continuous-Time Sigma-Delta Modulator for Bluetooth
	T63_An All-Digital Clock Generator for Dynamic Frequency Scaling

	Session T7: Testing II
	T71_An Efficient Multi-Phase Test Technique to Perfectly Prevent Over-Detection of Acceptable Faults for Optimal Yield Improvement via Error-Tolerance
	T72_A Built-In Self-Repair Method for RAMs in Mesh-Based NoCs
	T73_Co-Calibration of Capacitor Mismatch and Comparator Offset for 1-Bit/Stage Pipelined ADC
	T74_Built-In Self-Repair Techniques for Content Addressable Memories

	Session T8: Video and Image Processing
	T81_Scalable and Low Cost Design Approach for Variable Block Size Motion Estimation (VBSME)
	T82_An Area Efficient Shared Synapse Cellular Neural Network for Low Power Image Processing
	T83_A Reconfigurable Architecture for Entropy Decoding and IDCT in H.264
	T84_A 1.55ns 0.015 mm2 64-bit Quad Number Comparator

	Poster Session
	PS1_A Comprehensive Linear-regression-based Procedure for Inductor Parameter Extraction
	PS2_Single-Instruction based Programmable Memory BIST for Testing Embedded DRAM
	PS3_2.4 GHz Low-Pass Filters with Harmonic Suppression Using Integrated Passive Device Process
	PS4_A gm/ID-Based Synthesis Tool for Pipelined Analog to Digital Converters
	PS5_A 0.35μm CMOS Divide-by-3 LC Injection-Locked Frequency Divider
	PS6_Transmitter Equalization for Multipath Interference Cancellation in Impulse Radio Ultra-Wideband(IR-UWB) Transceivers
	PS7_Design and Analysis of 1-60GHz, RF CMOS Peak Detectors for LNA Calibration
	PS8_A 200-Mb/s 10-mW Super-regenerative Receiver at 60 GHz
	PS9_Segment based X-Filling for Low Power and High Defect Coverage
	PS10_Power and Noise Aware Test Using Preliminary Estimation
	PS11_Design Of On-Chip Power-Rail ESD Clamp Circuit With Ultra-Small Capacitance To Detect ESD Transition
	PS12_Design of a Dual-Mode Baseband Receiver for 802.11n and 802.16e MIMO OFDM/OFDMA
	PS13_A Memory-Efficient Architecture for Low Latency Viterbi Decoders
	PS14_On the Complexity of the Port Assignment Problem for Binary Commutative Operators in High-Level Synthesis
	PS15_Hierarchical Architecture for Network-on-Chip Platform
	PS16_A Practical Power Model of AMBA System for High-Level Power Analysis
	PS17_Incremental Physical Design Method for Flat SOC Design
	PS18_A Case Study on MPEG4 Decoder Design with SystemBuilder
	PS19_System-Level Development and Verification Framework for High-Performance System Accelerator
	PS20_Prefetching for Array Data in Embedded Java Hardware Accelerator

	Panel Discussion
	Author Index
	Organization

