
Way Stealing: Cache-assisted
Automatic Instruction Set Extensions

Theo Kluter†
ties.kluter@epfl.ch

Philip Brisk†

philip.brisk@epfl.ch
Paolo Ienne†

paolo.ienne@epfl.ch

Edoardo Charbon‡§

e.charbon@tudelft.nl
Ecole Polytechnique Fédérale de Lausanne (EPFL) Delft University of Technology
†School of Computer and Communication Sciences §Circuits and Systems Group

‡School of Engineering NL–2600 AA Delft, The Netherlands
CH–1015 Lausanne, Switzerland

ABSTRACT
This paper introduces Way Stealing, a simple architectural modifi-
cation to a cache-based processor to increase data bandwidth to and
from application-specific Instruction Set Extensions (ISEs). Way
Stealing provides more bandwidth to the ISE-logic than the regis-
ter file alone and does not require expensive coherence protocols,
as it does not add memory elements to the processor. When en-
hanced with Way Stealing, ISE identification flows detect more op-
portunities for acceleration than prior methods; consequently, Way
Stealing can accelerate applications to up to 3.7×, whilst reducing
the memory sub-system energy consumption by up to 67%, despite
data-cache related restrictions.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles; D.3.4 [Programming
Languages]: Processors—Optimization

General Terms
Design, Performance

Keywords
Application-Specific Processors, Instruction Set Extensions, Way
Stealing, Memory Coherence, Automatic Identification

1. INTRODUCTION
The performance requirements of embedded systems must con-

tinuously grow within a stringent cost and energy envelope. As
a consequence, algorithms to automatically identify application-
specific custom Instruction Set Extensions (ISEs) have been pro-
posed in recent years [5]. These ISEs effectively extract maximal
performance from relatively simple cores.

Unfortunately, the data bandwidth between the main processor
and the ISE logic is limited—indeed a classical formulation of the
ISE identification problem uses register-port availability as a con-
straint [9]. To mitigate this problem, Architecturally Visible Stor-
age (AVS) uses local memory elements to intrinsically increase the
data bandwidth, effectively bypassing the processor itself [1]. AVS
systems may use either flip-flops to store scalar variables or local
memories to store arrays.

AVS suffers from classic coherence problems in cache based sys-
tems; correctness can be ensured by embedding the AVS memories
in coherence protocols, such as those available in high-end em-
bedded multiprocessor systems [8]. Using a coherence protocol to
facilitate AVS in a single-processor system unfortunately imposes
a high cost in terms of energy and silicon real estate: namely the
tag array and a more complex cache state machine (see Figure 1).

Way Stealing, the contribution of this work, addresses the afore-
mentioned concerns. Way stealing is a simple architectural mod-
ification to a cache-based processor (see Figure 2). Way stealing
extends several existing paths in the processor data-cache interface
(see Figure 3) to increase bandwidth to and from ISEs, similar in
principle to coherent AVS, but without the overhead of a coher-
ence protocol. Some small modifications to ISE identification al-
gorithms to account for Way Stealing are presented as well.

The rest of the paper is organized as follows: Section 2 details
the related work in the domain. Section 3 introduces our concept
of Way Stealing, the specific problems that one could encounter by
its introduction, and brings effective and efficient solutions to all of
them. We show in Section 4 how Way Stealing can be integrated in
a framework that automatically identifies custom instruction set ex-
tensions. In Section 6 we address several benchmarks, and show the
effectiveness of ISE with Way Stealing, by using our FPGA-based
emulation platform and ISE identification framework as described
in Section 5. Section 7 concludes the paper.

2. RELATED WORK
Biswas et al. [1] introduced techniques to automatically identify

ISEs that can read and write directly to an AVS local memory; this
allowed for potentially larger ISEs with greater speedups than prior
methods that forbade the inclusion of memory accesses into ISEs.
The compiler inserted DMA transfers into the program to move
data between main memory and the AVS. Kluter et al. [8] observed
that this approach could lead to incorrect results because coherence
between the AVS and L1-cache was not maintained; to correct the
situation, the AVS and L1-cache were integrated into a coherence

4.1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07.....5.00

31

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
DAC’09, July 26-31, 2009, San Francisco, California, USA
Copyright 2009 ACM 978-1-60558-497-3/09/07....10.00

I$

Speculative
DMA engine

RF D$ RF

memory
Main

Snoopy I/F

AVS
AVS

ISE

Fetch Decode Exec Mem WB

coherence protocol

Figure 1: Current state-of-the-art Automatic Instruction Set
Extension algorithms provide high bandwidth to the ISE-
logic by adding Architecturally Visible Storage, however, they
require extensive hardware added to a standard processor
pipeline [1, 8].

protocol. Coherence protocols are typically meant for multiproces-
sor systems: their area overhead and impact on performance and
power consumption due to increased bus traffic are significant. Way
Stealing, achieves coherence but without the overhead of a proto-
col. Its drawback is that the number of AVS memories is limited by
the number of ways in the cache; the coherence-based approach, in
contrast, may allocate as many AVS memories as desired.

Other methods, orthogonal to AVS, have been proposed to in-
crease the bandwidth between the processor core and ISEs. Cong
et al. [2], for example, introduced shadow registers, which are writ-
ten by the processor’s ALU in parallel with the main register file;
however, this only increases ISE input bandwidth, with no affect
on the output bandwidth. Their ISEs were k-input cones, with at
most k inputs and one output; our custom instructions may have
any number of inputs and outputs, such as a 3-input, 3-output ISE
used for color space conversion in the CJPEG benchmark; their
method could not identify this ISE as it is not a k-input cone.

Jayaseelan et al. [6] used the forwarding mechanism to resolve
data hazards in a pipelined processor to increase the I/O bandwidth
to ISEs from 2-inputs and 1-output (the register file) to 4-inputs
and 2-outputs; Karuri et al. [7] proposed the use of VLIW-style
clustered register files, where each bank has 2 inputs and 1 output.
These approaches are compatible with Way Stealing, and could be
used if the ISE reads and/or writes many scalar variables; Way
Stealing should be used when ISE data originates from arrays.

Many reconfigurable cache architectures have been proposed in
the past. Ranganathan et al. [11] argued that cache associativity
should be configurable at runtime to meet varying needs across dis-
parate workloads. One of their proposed configurations places the
data/tag SRAM under compiler control, similar in principle to Way
Stealing. Their evaluation, however, focused on instruction reuse,
while ours focuses on increase performance through ISEs.

3. MORE BANDWIDTH: WAY STEALING
In an n-way set-associative data cache, each way contains sepa-

rate data and tag memories. All memories are activated in parallel
during a lookup. After hit detection, the valid data is selected by
an n-input multiplexor, and is sent to the processor for storage in
the register file (i.e. Figure 3). Prior to the multiplexor, there are n
values read in parallel, which, in principle, could be rerouted to the
ISE (see Figure 2).

Writing is similar; n values can be written at once. The write
behavior of a data cache is normally implemented by a write de-
coder, which, in turn, is activated by the hit signals. By extending
the write decoder, providing n data line from the ISE logic to the

I$ RF D$

ISE

RF

memory
Main

Fetch Decode Exec Mem WB

Figure 2: Automatic Instruction Set Extension utilizing Way
Stealing, as proposed in this work, provide high bandwidth to
the ISE-logic with only simple architectural modification to the
data cache and insertion of pipeline registers.

n data memories, and placing a multiplexor in front of each data
memory, the write bandwidth can be extended similarly (see Fig-
ure 2).

3.1 Preload and Locking
Way Stealing needs a preload-lock and preload-unlock custom

instruction to prevent extensive multiplexing and tag comparison
in the data cache. At compile time, these instructions load and lock
(unlock) a given array in a pre-determined way of the cache. These
instructions require simple extensions to the cache state machine.

During execution of an application, the cache page replacement
policy determines which way of the cache will store a given ar-
ray; in many cases the array will be scattered across different ways.
Thus, a compiler cannot feasibly predict the state of the cache prior
to executing an ISE. The compiler, therefore, must statically select
the ways that hold each array that will be read or written by an ISE
at runtime. Additionally, the compiler must ensure that these arrays
are not evicted until after the program section containing the ISEs
finishes its execution.

The preload-lock and preload-unlock instructions are similar to
cache prefetching and software cache-line locking [3]. Our preload-
ing scheme, however, differs from prefetching, as the compiler,
rather than the dynamic replacement policy, selects the ways that
hold each array. Three distinct situations may occur:

1. Similar to prefetching, the data does not reside in the cache
at all, and is loaded using the normal cache load/evict proce-
dure (shown as step 1 in Figure 4). Contrary to prefetching,
where the replacement policy selects the way dynamically,
the preload instruction statically selects the way, and then
locks it, possibly impeding the replacement policy.

2. Similar to prefetching, in case the data already resides in the
cache, and in the correct way, nothing has to be done (shown
as step 2 in Figure 4).

3. Contrary to prefetching, the data may already reside in the
cache, but in a different way than specified by the preload
instruction (shown as step 3 in Figure 4). For normal cache
operation there may only be one copy of a given data struc-
ture in the cache. By loading the data in the specified way, the
preload instruction would violate this rule, impeding correct
cache behavior; moreover, if the data already in the cache
was in the modified state, the preload operation would cre-
ate an inter-way coherence violation. One approach to solve
the problem is to evict the data in the target cache, copy it
from the source way to the target way, and then invalidate
the source way. A second approach, which we have adopted,

32

AGU
1 2

3

IndexTag Select

AGU base/modulo

Way 1

To Core

T
o

IS
E

 L
og

ic

Figure 3: Block diagram of the read path of a standard n-way
set-associative data cache. The Way Stealing modifications are
shown in black. Multiplexor (1) may be on the critical path.
Multiplexor (2) is out of the critical path. The pipeline regis-
ters (3) restrict the additional load due to long lines to the ISE
logic—they only add an extra pipeline register input load to the
read path. The write path is similar and omitted in this figure.

is to swap the contents of the source and destination ways, in-
cluding the tags. Although the second approach seems more
complex, it is faster than the first because it does not initiate
a cache line writeback.

3.2 Address Generation Units
In normal cache behavior, all ways from the cache are addressed

identically. The address provided by the process is divided into a
Tag, an Index and a Select, as shown on the top of Figure 3. The
Tag determines a hit or miss in a given way through a compari-
son against the tag memories; the Index selects a cache line; and
the Select picks the correct data in the selected cache line. Using
this addressing scheme for Way Stealing would reduce usability in
two ways. Firstly, all arrays used in an ISE must be aligned such
that the Index and Select parts of their start addresses are identical;
secondly, the access pattern of the data structures must be identical
as well. The first restriction can be enforced by padding; however
the second restriction limits the algorithmic behavior which an ISE
may exhibit.

To alleviate these restrictions, Way Stealing introduces an Ad-
dress Generation Unit (AGU), much like those found in DSPs,
for each way of the cache. Each AGU contains a count register
(Acount), a stride register (Astride), a mask register (Amask), and a
base register (Abase). The preload instruction ensures that the array
is already present in a given way. This reduces the total address-
ing of the AGU to the Index and Select parts, as shown in Fig-
ure 3. The preload instruction stores the start address (Index, Se-
lect) of the data structure into Abase. Figure 5 depicts the addressing
scheme that the AGU can perform. Although simple, this address-
ing scheme is easy to automatically detect and is representative of
most embedded applications.

3.3 Zero Overhead Loops
Way Stealing requires pipeline registers, shown in Figure 2 and

Figure 3, which minimize the increase in the processor’s critical
path; however, they impose a multi-cycle execution phase of an

dirty copy

dirty copy

dirty copy

dirty copy

dirty copy

dirty copy

dirty copy

dirty copy

and invalidate (left) or swap the contents of the cache lines of both ways
(right). Simply loading the contents in way 1 would result in a inter cache

already present in way 1: Nothing
to be done.

in way 1: Normal cache load/evict
procedure.

coherence problem and/or violate the cache rule that only 1 copy of a
data structure may reside in the cache for proper operation.

Cache Way 1 Cache Way 2 Cache Way 1 Cache Way 2

Cache Way 1 Cache Way 2 Cache Way 1 Cache Way 2

Step 1. Loading the first cache line Step 2. The second cache line is

The third cache line resides in the wrong way, we can either copyStep 3.

Figure 4: The different steps of preloading a data structure in
way 1 having a potential risk for inter cache coherence prob-
lems.

ISE, as depicted on the left of Figure 6. The program execution,
shown on the left hand side, can be accelerated using pipelining, as
shown on the right hand side.

Pipelining the path from the data cache to the ISEs is similar to
zero overhead loops instructions. The branch and increment phase
of a program are removed to amortize their cost on each iteration.
Using zero overhead loops in conjunction with Way Stealing amor-
tizes the read delay on each iteration, and only adds one initial read
delay at the beginning of each loop. Figure 6 illustrate the benefits
of this approach.

3.4 Coherence
Way Stealing is intrinsically coherent, unlike AVS [1, 8], as it

introduces no new memory elements into the processor. Coherence
protocols in multiprocessor systems can be extended to accommo-
date Way Stealing as well, but doing so is beyond the scope of this
paper.

3.5 Way Stealing Restrictions
To ensure proper cache operation, only one copy of an array may

reside in the cache; therefore, only one data lane, as depicted in Fig-
ure 2 can be reserved for each array. Parallel reads and writes are
only possible for distinct data structures. Secondly, as the capacity
of a way is fixed, special care must be taken for data structures that
exceed this size.

4. AUTO ISE WITH WAY STEALING
This section describes a Way Stealing-aware ISE identification

flow. ISE selection algorithms, in general, need to model the cost of
operations on a normal RISC pipeline in contrast to the cost of the
operations executing on an ISE-enhanced pipeline. The concept of
Way Stealing introduces extra costs normally not considered in ISE
identification flows. The primary challenge is to model the costs of
preload and lock/unlock instructions when evaluating an ISE, while
accounting for the restrictions listed in the preceding section. Fur-
thermore, Way Stealing requires some specific compiler analyses
in the identification process.

33

Select

Index
Amask Abase

Acount

Astride

Figure 5: The functional block diagram of the Address Gener-
ation Unit (AGU) shown in Figure 3.

4.1 Modeling the Cost of Way Stealing
Way Stealing has tangible benefits, but also incurs some costs,

which must be modeled accurately in order to determine when and
where it is best applied.

The first cost occurs when a preload instruction swaps cache
lines, as depicted in step 3 of Figure 4, which we assume takes
Nswap cycles. If the arrays occupy α cache lines, then the maxi-
mum preload cost is defined by λpreload = α · Nswap + 2α. This
cost is only incurred when a swap occurs; the cost of a cache-line
load is identical for both normal operation and Way Stealing, and
can thus be omitted. At compile time, we cannot determine how
many cache lines must be swapped; the estimate, conservatively,
is based on worst-case assumptions. The extra factor 2α accounts
for cycling through all cache lines during the preload instruction,
and unlocking of α cache lines after executing an ISE. The preload
cost λpreload replaces the λDMA in the algorithm described in [1];
however, λpreload is orders of magnitude smaller than λDMA, as no
memory accesses are required.

The second cost, λstore, is the cost of store instructions. RISC
based processors execute arithmetic operations on the contents of
registers. To move the result to the memory hierarchy, the contents
of a register needs to be moved from the register file back to the
data cache by using a store instruction. The cost related to this
store instruction is λstore = 1 processor cycle. However, if the store
instruction(s) is/are selected to be part of an ISE with Way Stealing
and takes place on one of the data lanes depicted in Figure 2, than
λstore reduces to 0. In this case the arithmetic operation is directly
performed on the data cache contents, bypassing the register file.

The final cost, λload, is the cost of load instructions. Similar to
the store instruction the contents of the data cache has to be moved
to the register file by (a) load instruction(s) with an associated cost
of λload = 1 processor cycle. However, when the load instruc-
tion(s) is/are selected to be part of an ISE with Way stealing and
are allocated to the data lanes depicted in Figure 2, than the λload

should reduce to 0. However, λload does not become zero, because
the pipeline registers inserted in the path between the data-cache
and ISE logic increases λload from 1 cycle to 2.

4.2 ISE Identification Flow
The flow to find ISEs in conjunction with Way Stealing consists

of ten phases:

1. Data structure disambiguation: The compiler attempts to
disambiguate all data structures in the program [1]. All load
instructions to arrays that are not disambiguated are marked
as forbidden; no ISE may include a forbidden operation.

2. Loop detection: The loop hierarchy is computed [10]. All
loops with a data-dependent loop count and those that cannot
be perfectly nested are marked as forbidden.

3. Zero overhead loop detection: The innermost (leaf) loops
in the hierarchy identified in the preceding step are examined
for compatibility with zero overhead Way Stealing, described

W

W

M

F

n+6

n+7

n+5

n+4

n+2

n+3

n+1
n

PC:

n+1

n

n+2

n+3

n+4

n+5

n+6

n+7

n+8

n+9

n+10

n+11

PC:
W

M

E

D

F

W

M

E

D

F

E

W

M

D

F

E

W

M

D

F

E

W

M

D

F

E

W

M W

M W

D E M

F D E

DF

F

10987654321
t

16151413121110987654321
t

M WEF D

E

E

W

M W

M

D

ED

F D

F

Figure 6: (Left) The execution of a program segment with a un-
rolled loop of four custom instructions applying Way Stealing.
Due to inserted pipeline registers, the read of the data-cache
takes 2 cycles, extending the execution phase to 3 cycles. (Right)
By introducing the concept of zero overhead loops in the cus-
tom instruction, the data-cache read can be pipelined and the
same program segment executes faster.

in Section 3.3. If the loop has a speedup, this loop is selected
as ISE candidate and marked with a zero overhead annota-
tion. To prevent the ISE identification step 5 from selecting
parts of the loop as an ISE candidate, all operations in the
loop are marked as forbidden.

4. Access pattern detection: For each loop, the access pat-
tern to each disambiguated data structure is analyzed and
matched with the AGU’s capability. Load instructions that
follow an incompatible access pattern are marked as forbid-
den.

5. ISE identification: ISEs are identified using a known algo-
rithm, e.g., [9]. Loads and stores may be included in the
search, and their costs are annotated with λload or λstore as
described in Section 4.1. All ISE candidates including load
and/or store instructions are marked with a Way Stealing an-
notation.

6. Way Stealing Filtering: All ISE candidates whose data lane
or array requirements exceed the number of cache ways, or
whose arrays exceed the capacity of a way, are removed from
consideration. Transformations such as loop unrolling must
be made aware of these restrictions to be used successfully in
conjunction with Way Stealing. The loops selected in phase 3
are added as potential ISE candidates.

7. Preload Annotation: λpreload is added to the cost of each
ISE candidate with a Way Stealing annotation. The cost for
configuring the AGUs is calculated and added to each candi-
date as well. After the update, all ISEs no longer having any
speedup are removed.

8. Custom instruction selection: The best m ISE candidates
are selected; m is a designer-specific parameter.

9. Preload instruction insertion: Preload and unlock instruc-
tions are inserted, always outside the body of leaf loops. In
all other situations, they are directly placed before and af-
ter the ISEs. More sophisticated placement algorithms are
beyond the scope of this paper. AGU setup instructions are
inserted similarly.

10. Custom instruction insertion: ISEs are inserted at the ap-
propriate locations.

34

0.8x

1.0x

1.2x

1.4x

1.6x

1.8x

2.0x

2.2x

2.4x

0.5x1x2x3x

R
e
la

ti
v
e
 p

e
rf

o
rm

a
n

c
e

Relative energy consumption

Original Code
ISE

Speculative DMA
Way Stealing

Reference configuration

Figure 7: Design space exploration of the CJPEGV2-DATA1
testbench for the different processor specializations. The cache
configuration delivering the best performance per energy for
the original system is chosen as reference point.

4.3 Example of Generated Code
To demonstrate the overhead introduced by Way Stealing, fol-

lowing code snippet is used:

for (i=0; i<10; i++)
b[i] = ise1(a[i],c[i]);

After the complete identification phase, the code-snippet is trans-
formed into the following Way Stealing assembly code:

preload b,w1,10*4 // load b[] into way 1
preload a,w2,10*4 // load a[] into way 2
preload c,w3,10*4 // load c[] into way 3
setall Amask,-1 // all Amask regs = 0xFF
setall Acount,0 // all Acount regs = 0
setall Astride,1 // all Astride regs = 1
ise1 w1,w2,w3,10 // perform ISE
unlock b,w1,10*4 // unlock way 1
unlock a,w2,10*4 // unlock way 2
unlock c,w3,10*4 // unlock way 3

5. EXPERIMENTAL SETUP
We used modified an internally developed research compiler to

perform ISE identification using Way Stealing. We also integrated
prior relevant algorithms [1, 8] into the same environment. Our
target was an OpenRISC-compatible FPGA-based emulation plat-
form with all of the architectural changes required to support Way
Stealing, as described in Section 3.

We selected several applications from the EEMBC benchmark
suite [4] to evaluate Way Stealing. For each benchmark, the com-
piler generated VHDL models of the ISE, with or without Way
Stealing, which were then added to the FPGA-based emulation
platform. The compiler also generates modified C-code that in-
cludes calls to the appropriate ISEs, including prefetching and lock
(unlock) instructions. The modified C-code was cross-compiled
using a gcc 3.4.4 toolchain based on “newlib” for the OpenRISC.

The FPGA-based emulation platform has software controllable
16 kB instruction and data caches. Our experiments used an 2, 4,
8, and 16 kB 1-way, 2-way, and 4-way set associative instruction
cache with a Least Recently Used (LRU) replacement policy. We
used a 2, 4, 8, and 16 kB 4-way set associative data cache with an

Original Code

ISE enhanced Code

Way Stealing enhanced Code
2.0 x

1.5 x

1.0 x

0.5 x

M
P

E
G

2D
E

C
_D

A
T

A
3

C
JP

E
G

V
2_D

A
T

A
2

C
JP

E
G

V
2_D

A
T

A
1

C
JP

E
G

V
2_D

A
T

A
3

C
JP

E
G

V
2_D

A
T

A
5

C
JP

E
G

V
2_D

A
T

A
6

C
JP

E
G

V
2_D

A
T

A
7

D
JP

E
G

V
2_D

A
T

A
2

D
JP

E
G

V
2_D

A
T

A
3

D
JP

E
G

V
2_D

A
T

A
4

D
JP

E
G

V
2_D

A
T

A
5

D
JP

E
G

V
2_D

A
T

A
6

D
JP

E
G

V
2_D

A
T

A
7

C
JP

E
G

V
2_D

A
T

A
4

D
JP

E
G

V
2_D

A
T

A
1

M
P

E
G

2D
E

C
_D

A
T

A
1

M
P

E
G

2D
E

C
_D

A
T

A
4

M
P

E
G

2D
E

C
_D

A
T

A
5

0.5 x

1.0 x

Relative energy consumption

A
IF

IR
F

01

Speedup

2.5 x
3.7x

Figure 8: (Top) The speed up of several EEMBC benchmarks
and data sets applying traditional ISEs and Way Stealing rela-
tive to the run-time of the original source code. (Bottom) The
corresponding relative energy consumption graph of the same
benchmarks as shown on the top.

LRU replacement policy that was enhanced to support Way Steal-
ing.

For all benchmarks, we imposed a 4:2 input-output constraint on
the ISE identification algorithm when Way Stealing was not used,
which is consistent with the register file restrictions; when Way
Stealing was used, we increased the input-output constraint to 6:5
to account for the greater bandwidth.

We used CACTI [12] to determine the read/write energy con-
sumption for different cache configurations in a 90 nm technology.
The energy consumed by the Way Stealing read/write accesses is
conservatively overestimated by assuming that each read/write ac-
cess consumes the same amount of energy as a normal cache read
access. The external memory and bus-access read/write energy
consumption is estimated to be 792pJ per access. The energy val-
ues reported here only include the dynamic energy consumed in
the memory sub-system; this model does not include processor and
leakage energy.

For all experiments we performed a cache design space explo-
ration on the original system (as shown in Figure 7). We deter-
mined the cache configuration with the best performance-energy
product as the reference configuration for our experiments.

6. EXPERIMENTAL RESULTS
Figure 8 shows the relative execution time and energy consump-

tion of several EEMBC benchmarks augmented with Way Steal-
ing custom instructions with respect to the original code. Figure 9
shows a detailed graph of the CJPEG benchmark, shown as the first
set of bars in Figure 8, and includes comparison with traditional
ISEs [9] and speculative DMA [8]. Both Figure 8 and Figure 9
only represent the results relative to the reference configuration.

Figure 8 shows clearly that Way Stealing consumes significantly
less energy and achieves tangible speedups compared to the base-
line. The reduction of energy consumption due to four effects, the
first of which is common to all ISE methods, and the latter three of
which are specific to Way Stealing: (1) replacing several instruc-

35

Table index to
RGB conversion

RGB to YCrCb
conversion

C
ode

R
eference

IS
E

S
peculative

D
M

A

W
ay

S
tealing

Relative Execution Time
1.0x 1.0x

1.6x 1.7x

2.1x

Rest

DCT

Quantisation

C
ode

R
eference

IS
E

S
peculative

D
M

A

W
ay

S
tealing

Relative Energy Consumption

0.7x

0.8x

0.6x

Figure 9: Detailed graph of the CJPEG benchmark shown in
Figure 8. (Left) Way Stealing provides more opportunities for
ISE detection due to its reduced overhead cost; however, on
some kernels (like the DCT) the state-of-the-art outperforms
Way Stealing. (Right) Way Stealing does not require expensive
data structure moves to and from an AVS, consuming signifi-
cantly less energy.

tions by one ISEs reduces the number of instruction cache fetches;
(2) allocating one data structure to each way reduces data cache
thrashing and capacity misses for data structures that exceed the ca-
pacity of a single way; (3) parallelizing cache read/write accesses
reduces the total number of cache access; and (4) the use of zero
overhead loop instructions removes a significant number of instruc-
tion cache accesses.

Figure 9 compares Way Stealing to both traditional ISEs and
ISEs augmented with AVS [1] and speculative DMA to ensure co-
herence [8]. The DCT kernel benefits significantly from storing an
8 × 8-byte matrix in an AVS with eight read and eight write ports
to the pipelined DCT logic (an ISE). Unfortunately, since each data
structure may reside in just one way of the cache, Way Stealing can
only provide a single read and write port, regardless of associativ-
ity; this sequentializes the loads and stores, inhibiting the accelera-
tion of this particular kernel compared to coherent AVS.

Second, among all kernels shown in Figure 9, Way Stealing finds
more opportunities for acceleration compared to existing methods,
with or without coherent AVS. This results from the reduced over-
head of λpreload compared to the λDMA required for DMA transfers
when AVS is used. The use of zero overhead loops in conjunction
with Way Stealing provides additional advantages that traditional
ISEs, whose execution bodies are restricted to convex data flow
subgraphs, cannot.

Lastly, Figure 9 shows that Speculative DMA consumes signifi-
cantly more energy in the quantization kernel than the other three
scenarios. Speculative DMA increases the miss rate in the data
cache due to the DMA transfers required to facilitate coherent AVS;
this is typical of other benchmarks as well. Way Stealing avoids
these extra misses as it access the data directly from the cache.

7. CONCLUSIONS
Way Stealing is a simple architectural modification to a cache-

based embedded processor that significantly increases data band-
width to and from ISEs. Our results, derived by a cycle-accurate
FPGA-based emulation platform, shows that ISEs enhanced with
Way Stealing improve performance and reduces power consump-
tion compared to the state-of-the-art. Due to restrictions imposed
by the cache, Way Stealing does not achieve the best performance

on all kernels compared to AVS, but ensures coherence at a much
cheaper cost, and does not require the instantiation of new AVS
memories. For these reasons, we believe that Way Stealing should
be used instead of coherent AVS for modern embedded systems
where energy efficiency and reduced cost trump raw performance.

8. ACKNOWLEDGMENTS
The authors thank Bhargava Shastry for his extensive work in

generating the experimental results, and Xilinx for their generous
donation of FPGA devices through their XUP program.

9. REFERENCES
[1] P. Biswas, N. Dutt, L. Pozzi, and P. Ienne. Introduction of

architecturally visible storage in instruction set extensions.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, CAD-26(3):435–46, Mar. 2007.

[2] J. Cong, G. Han, and Z. Zhang. Architecture and compiler
optimizations for data bandwidth improvement in
configurable embedded processors. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 14(9):986–97,
Sept. 2006.

[3] J. A. Fisher, P. Faraboschi, and C. Young. Embedded
Computing: A VLIW Approach to Architecture, Compilers
and Tools. Morgan Kaufmann, San Francisco, Calif., 2005.

[4] T. R. Halfhill. EEMBC releases first benchmarks.
Microprocessor Report, 1 May 2000.

[5] P. Ienne and R. Leupers, editors. Customizable Embedded
Processors—Design Technologies and Applications. Systems
on Silicon Series. Morgan Kaufmann, San Mateo, Calif.,
2006.

[6] R. Jayaseelan, H. Liu, and T. Mitra. Exploiting forwarding to
improve data bandwidth of instruction-set extensions. In
Proceedings of the 43rd Design Automation Conference,
pages 43–48, San Francisco, Calif., July 2006.

[7] K. Karuri, A. Chattopadhyay, M. Hohenauer, R. Leupers,
G. Ascheid, and H. Meyr. Increasing data-bandwidth to
instruction-set extensions through register clustering. In
Proceedings of the International Conference on Computer
Aided Design, pages 166–71, San Jose, Calif., Nov. 2007.

[8] T. Kluter, P. Brisk, P. Ienne, and E. Charbon. Speculative
DMA for Architecturally Visible Storage in Instruction Set
Extensions. In Proceedings of the International Conference
on Hardware/Software Codesign and System Synthesis,
pages 243–48, Atlanta, Ga., Oct. 2008.

[9] L. Pozzi, K. Atasu, and P. Ienne. Exact and approximate
algorithms for the extension of embedded processor
instruction sets. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems,
CAD-25(7):1209–29, July 2006.

[10] G. Ramalingam. On loops, dominators, and dominance
frontiers. ACM Transactions on Programming Languages
and Systems (TOPLAS), 24(5):455–90, Sept. 2002.

[11] P. Ranganathan, S. V. Adve, and N. P. Jouppi.
Reconfigurable caches and their application to media
processing. In Proceedings of the 27th Annual International
Symposium on Computer Architecture, pages 214–24,
Vancouver, June 2000.

[12] D. Tarjan, S. Thoziyoor, and N. P. Jouppi. CACTI 4.0.
Technical Report HPL-2006-86, Hewlett-Packard
Development Company, Palo Alto, Calif., June 2006.

36

