Libra: Software-Controlled Cell Bit-Density to Balance Wear
in NAND Flash

XAVIER JIMENEZ, DAVID NOVO, and PAOLO IENNE, Ecole Polytechnique Fédérale de

Lausanne (EPFL), School of Computer and Communication Sciences, CH-1015 Lausanne, Switzerland

Hybrid flash storages combine a small Single-Level Cell (SLC) partition with a large Multilevel Cell (MLC)
partition. Compared to MLC-only solutions, the SLC partition exploits fast and short local write updates,
while the MLC part brings large capacity. On the whole, hybrid storage achieves a tangible performance
improvement for a moderate extra cost. Yet, device lifetime is an important aspect often overlooked: in a
hybrid system, a large ratio of writes may be directed to the small SLC partition, thus generating a local
stress that could exhaust the SLC lifetime significantly sooner than the MLC partition’s. To address this
issue, we propose Libra, which builds on flash storage made solely of MLC flash and uses the memory
devices in SLC mode when appropriate; that is, we exploit the fact that writing a single bit per cell in an
MLC provides characteristics close to those of an ordinary SLC. In our scheme, the cell bit-density of a block
can be decided dynamically by the flash controller, and the physical location of the SLC partition can now
be moved around the whole device, balancing wear across it. This article provides a thorough analysis and
characterization of the SLC mode for MLCs and gives evidence that the inherent flexibility provided by Libra
simplifies considerably the stress balance on the device. Overall, our technique improves lifetime by up to
one order of magnitude at no cost when compared to any hybrid storage that relies on a static SLC-MLC
partitioning.

Categories and Subject Descriptors: B.3.2 [Design Styles]: Mass Storage; D.4.2 [Storage Management]:
Allocation/Deallocation Strategies

General Terms: Design, Experimentation, Measurement, Performance, Reliability

Additional Key Words and Phrases: NAND flash memory, lifetime, endurance, SLC, MLC, wear leveling,
wear balancing

ACM Reference Format:

Xavier Jimenez, David Novo, and Paolo Ienne. 2015. Libra: Software-controlled cell bit-density to balance
wear in NAND flash. ACM Trans. Embedd. Comput. Syst. 14, 2, Article 28 (February 2015), 22 pages.

DOI: http://dx.doi.org/10.1145/2638552

1. INTRODUCTION

NAND flash memory is the leading data storage technology for mobile devices, such as
MP3 players, smartphones, tablets, and netbooks. It features low power consumption,
high responsiveness, and mobility. However, flash technology also comes with its share
of inconveniences. The device has a very specific physical organization, which results
in a coarse granularity of data accesses. As with any EEPROM, memory cells need
to be erased before being written again. Moreover, a flash memory cell can only be
written a limited number of times before wearing out. The severity of these limitations

Authors’ addresses: X. Jimenez, D. Novo, and P. Ienne, EPFL-IC-ISIM-LAP, Station 14, INF 137, 1015
Lausanne, Switzerland; emails: {xavier.jimenez, david.novo, paolo.ienne}@epfl.ch.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org

© 2015 ACM 1539-9087/2015/02- ART28 $15.00

DOLI: http://dx.doi.org/10.1145/2638552

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

http://dx.doi.org/10.1145/2638552
http://dx.doi.org/10.1145/2638552

28:2 X. Jimenez et al.

logical address logical address
©T @
.9 S
[
50 Cter > Cter D

PsLc PsLc

Translation
layer

Physical
space

MLC wear Endurance SLC-MLC cumulative wear
SLC wear (wear limit)

(a) Hard Partitions (b) Soft Partitions

Fig. 1. Hard versus soft partitioning. A hybrid FTL redirects small writes to a page-level mapped buffer
and directs large sequential writes directly to the data partition. The buffer is mapped to an SLC to benefit
from low write latency and low energy, while the data uses an MLC for density. When writes are unbalanced
across buffer and data, a hard partition will wear out faster than the other, while soft partitioning (the
contribution of the present article) allows for balancing the wear on the global device.

is somehow mitigated by a software abstraction layer, called Flash Translation Layer
(FTL), which interfaces between common file systems and the flash device.

The basic functionality of an FTL is the translation of logical addresses to physical
addresses. Such translation can be done following various policies, which directly affect
performance, lifetime, and device cost. Furthermore, the address translation table is
typically stored in expensive RAM cells, generally SRAM or DRAM, which makes the
table size a critical design parameter of any FTL. In particular, a small translation table
is cheap but implies coarse-grained data manipulation (block level) that results in poor
performance and lifetime. Instead, a large table enables fine-grained data manipulation
(page level) and thus higher performance and lifetime, but at a significant increase in
device cost.

Hybrid FTLs [Chiao and Chang 2011; Cho et al. 2009; Kim et al. 2002; Lee et al. 2007,
2008] try to simultaneously achieve the benefits of coarse- and fine-grained mappings
by dividing the flash memory into two regions: (1) a large data partition, which is
addressed at the block level, and (2) a small log buffer partition (typically less than
10% of the storage capacity), which is addressed at the page level. The purpose is to
direct small random writes to the log buffer so that they can be written back to the
data partition in order as big chunks. Such an FLT requires a filter, illustrated in
Figure 1(a), to decide whether a data write should be directed to the buffer or data
partition. This type of filter is typically based on a request size threshold: large write
requests are less likely to be updated in the near future compared to small random
writes.

Considering that a significant amount of write accesses go to the small buffer par-
tition, previous work [Chang 2010; Im and Shin 2010; Park et al. 2011; Murugan and
Du 2012] proposed to build the small buffer partition from Single-Level Cell (SLC)
flash, which provides high performance and low energy consumption but poor density,
and the larger data partition on Multilevel Cells (MLCs) of lower performance but
higher density. As a result, the flash device has the potential to exhibit performances

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:3

comparable to SLCs (particularly for frequent local updates) while keeping the area
efficiency of MLCs to a great extent. However, this previous work largely disregarded
the effect of such SLC-MLC partitioning on the device lifetime. Managing the SLC and
MLC partitions as distinct physical parts of the flash device, as suggested by all the
previous pieces of work, can lead to a serious reduction in lifetime. We show that such
a configuration can reduce the lifetime by more than half compared to a regular ML.C
device, assuming typical buffer sizes and utilizations. Importantly, MLC endurance is
already one order of magnitude shorter than the SLC endurance [Grupp et al. 2012].
Consequently, any further reduction of lifetime may jeopardize the use of SLC-MLC
partitions in a practical system, despite their significant advantages in performance
and density. Figure 1(a) suggests how the extensive use of the buffer partition, due
to a particular application write pattern, results in an unbalanced stress, causing the
device to fail well before most of its cells deteriorate above their maximum wear level
(the large data partition is still healthy).

Accordingly, this article presents Libra, a soft SLC-MLC partitioning architecture
that maximizes the device lifetime by dynamically changing the physical allocation
of the buffer in order to balance the cumulated stress of each individual flash block.
Such technique relies on the fact that an MLC can be managed as an SLC while largely
keeping the performance benefits of a physical SLC. Figure 1(b) illustrates a device
implementing Libra, where the buffer uses SLC mode and each cell has a cumulated
wear from MLC and SLC mode that can be globally balanced. The proposed soft par-
titioning is built from a single flash technology instead of two for the hard partitions,
which simplifies many aspects of the storage. Furthermore, it can be adapted to existing
hybrid FTLs with minimal effort to significantly increase the device lifetime (between
1.5 and 10x for typical scenarios), while displaying the same benefits in performance,
energy, and density as a hard partitioning. Libra is practical and attractive, enhancing
an MLC device with performances close to SLCs at a modest penalty in density while
still being able to guarantee lifetimes slightly superior to MLCs at virtually no extra
cost.

The rest of the article is organized as follows. A background on NAND flash memory
is provided in Section 2. In Section 3, we introduce combined SLC-MLC architectures
and analyze their lifetime limitations. We introduce Libra in Section 4. We characterize
the effects of SLC mode in Section 5. Lifetime and performance evaluation for Libra and
hard partitions are presented in Section 6. The related work is discussed in Section 7,
and Section 8 concludes our article.

2. BACKGROUND ON NAND FLASH

NAND flash memories are typically organized in blocks of hundreds of pages (typically
128-512) of several kilobytes (typically 4-32kB). As illustrated in Figure 2(a), the
NAND flash cells are arranged in strings, one per bit line. Multiple flash pages can
share the same word line, particularly for MLC, which stores two bits per cell and
where the Least Significant Bit and Most Significant Bit (LSB and MSB) of a cell
are mapped to different pages. There are multiple ways to map cells to pages. We
illustrate the mapping corresponding to two standard architectures in Figure 2(b)
and Figure 2(c), namely, All-Bit-Line (ABL) and interleaved, also named Half-Bit-Line
(HBL). Specifically, compared to HBL, ABL uses every bit line in parallel, which roughly
doubles bandwidth for a larger control logic and an increase in latency.

Flash memory cells are built from floating gates, which store information by using
electron tunneling to place and remove charges from it. The action of adding charge
to a cell is called programming, whereas the removal of this charge is called eras-
ing. While reading and programming cells are performed on the page level, erasing
must be performed on an entire block. A programmed page must be erased before it

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:4 X. Jimenez et al.

NAND flash block ABL HBL
organization architecture architecture
Block | | ﬂoTting ﬁte LSB
N
1
WLO \ wWLO | WLO |]
WL1 \
1] msB
woHIE [weiHIC]
WL2- \ (8] El
3 7
WL3 | w2 | E w2 |]
i ‘ .
5
wis| wes I fY
I I I I
BLO BL1 .. BLM Blogg Bleven

(@ ® ©

Fig. 2. Flash cells’ organization. (a) shows the organization of cells inside a block. A block is made of cell
strings for each bit line (BL). A cell on a BL can be selected independently through specific voltage setup on
the word lines (WLs). (b) and (¢) show two examples of cell-to-page mappings in 2-bit MLC flash memories.
Each bit of an MLC is mapped to a different page. For instance, in (b), the LSB and MSB of WL, are mapped
to pages 1 and 4, respectively. The page numbering also gives the programming order; therefore, prior to
programming the MSB of a WL, the LSB of the next WL is programmed. This cell programming cross-
sequence narrows the disturbance that occurs during programming. (c¢) presents another MLC architecture,
where the even and odd pages form two interleaved groups of LSB and MSB pages, making a total of four
pages per word line. We evaluated one chip for each of these mappings in our experiments.

=

can be programmed again, which is somewhat inconvenient. Furthermore, pages in a
block must be programmed sequentially, starting from page 0. This sequentiality is de-
signed to minimize the programming disturbance on neighboring pages, which receive
undesired voltage shifts despite not being selected. Figure 2(b) and Figure 2(c) show
that the LSBs of WL;,; are programmed before the MSBs of WL;. This programming
sequence makes it possible to correct the WL; ; LSB disturbance during the subse-
quent WL; MSB programming because the amount of charge in the WL; is always
increased with its MSB programming.

When the cell-to-page mapping is known, it is possible to use a block in SLC mode
by programming exclusively the LSB of its cells and bypassing every MSB [Frankie
2007]. This is done without breaking the sequentiality constraint or compromising the
stored data.

Finally, the flash cells also have limited endurance: cells deteriorate when they
go through Program/Erase (P/E) cycles and can only experience a finite amount of
such cycles before they become unreliable. Interestingly, the SLC mode reduces this
deterioration and will help to enhance the device lifetime. Further analysis will be
provided in Section 5.

Flash Translation Layers (FTLs) map logical addresses to physical flash locations.
To do this, the FTL maintains the state of every page—typical states are clean, valid,
or invalid, as illustrated in Figure 3(a). Valid pages cannot be reprogrammed without
being erased, which means the FTL must always have clean pages available and will
direct incoming writes to them. Whenever data is written, the selected clean page
becomes valid and the old copy becomes invalid. This is illustrated in Figure 3(b),
where D1 and D4 have been reallocated.

When a block is used in SLC mode, all of its MSB pages must be bypassed and are
considered idle. This is illustrated in Figure 3(d), where block A has been set to SLC
mode. Importantly, it is not necessary to allocate memory in the translation table to

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:5

DO D4 D14 DO D14
D5 D15 D15
D9

| b1 || D6 D10 D1
o —
D11 D11
D12 D12
D3 D8 D13 D13

A B C D

D14

D9 D4
D6 D1
D2
D3

A B C D A B C D
(© (d)

[] CLEAN [] vauD B NVALD I (dle (SLC-mode)

Fig. 3. Pages state transitions. (a) shows the various page states found in typical flash storage: clean when
it has been freshly erased, valid when it holds valid data, and invalid when its data has been updated
elsewhere. In (b), data D1 and D4 are updated and their previous values are invalidated from blocks A and
B. In (¢), block A is reclaimed by the garbage collector. The remaining valid data were first copied to block D,
before block A was erased. (d) illustrates block A set as SLC mode: half of its pages become implicitly idle.

save explicitly all MSB pages’ states; indeed, when a block is used in SLC mode, every
MSB page is implicitly considered idle.

The number of invalid pages grows as the device is written. At some point, the FTL
must trigger the recycling of invalid pages into clean pages. This recycling process is
known as garbage collection, which selects a victim block according to a certain policy,
copies any remaining valid page to available clean pages, and then erases the victim
block. In the case of hybrid FTLs, this is generally triggered when the buffer becomes
full. An example of garbage collection is illustrated in Figure 3(c), where block A is
selected as the victim.

After a specified amount of P/E cycles, flash blocks become unreliable and their data
integrity becomes compromised. FTLs implement several techniques that maximize
the use of this limited endurance to guarantee a sufficient device lifetime. The typical
wear-leveling algorithms implemented in FTLs target the even distribution of P/E
counts over the various blocks [Wu and Zwaenepoel 1994; Chang et al. 2007]. However,
despite a uniform wear, a few flash blocks normally die before the specified device
endurance. Indeed, blocks do not present the same level of tolerance toward P/E cycles
due to process variation, and some blocks might become unreliable significantly sooner
than others. Accordingly, FTL reserves some spare blocks to replace early-failing blocks
during the device lifetime [Micron 2010].

All of the blocks degrade while accumulating P/E cycles [Micheloni et al. 2010]. A
block becomes progressively less efficient in the retention of charges, more sensitive to
neighboring disturbances, and therefore more prone to errors. As a result, all blocks
experience a gradual /Bit Error Rate/ (BER) increase with the number of P/E cycles
during their life cycle. Error-Correcting Codes (ECCs) are typically used to correct a
limited number of those errors within a page.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:6 X. Jimenez et al.

3. SLC-MLC HYBRID STORAGE

There are two main commercially successful NAND flash memory types: SLC and MLC.
The devices of the latter type store multiple bits per memory cell, providing a larger
bit density and hence a smaller cost per bit. Several bits can be stored in a single cell
by using multiple voltage thresholds. Conventionally, the MLC refers to three voltage
thresholds and stores 2 bits per cell, the Triple-Level Cell (TLC) or X3 stores 3 bits per
cell, and X4 stores 4 bits per cell.

Manipulating MLCs is trickier than SLCs: a higher precision is required to differ-
entiate the multiple voltage levels, which translates into about three to four times
slower page programs and consumes more energy [Grupp et al. 2009]. Furthermore,
because of reduced margins between the voltage thresholds, the MLC is more sensitive
than the SLC to charge losses and neighboring cell interferences that typically affect
flash reliability, which translates into about an order of magnitude shorter endurance
[Grupp et al. 2012]. Therefore, the MLC offers a higher bit density than the SLC at the
expense of lower performance, higher energy consumption, and reduced lifetime.

Hybrid flash devices combine one or more SLC devices to act as a buffer with one
or more MLC devices to implement the data partition; their purpose is to improve the
device performance: the more hot data (frequently updated data) directed to the log
buffer, the closer the hybrid device performance is to that of an SLC-only device. Log
buffers need to be carefully dimensioned, and the smaller the buffer partition can be
made, the higher the bit density of the flash device. This is a well-understood tradeoff
between cost and performance [Park et al. 2011]. Yet, the impact of such partitioning
on the device lifetime is critical and must be carefully considered.

Depending on the application write pattern, an unbalanced wear can occur between
the buffer and data partitions, as illustrated in Figure 1. Each partition lifetime is
proportional to its technology endurance and capacity, and inversely proportional to
the ratio of writes directed to it. For example, let us consider a budget of 100 cells; we
allocate 5% for an SLC buffer and the rest to the MLC data partition. Considering that
the endurance of an SLC is about 10 times larger than that of an MLC [Grupp et al.
2012] and, for this particular example, that each partition receives 50% of the writes,
in this scenario and compared to an MLC-only device receiving 100% of the writes, the
normalized MLC-data partition lifetime is

Capacity
LD _ Capacitym _ 0.95 -19 (1)
Writespata 05 e
Writestoral,
On the other hand, the SLC partition allocates only 5% of the cells, and each cell has
10 times the endurance of an MLC but can store only half of the bits of an MLC, which
translates to 2.5% of the capacity of an MLC-only device; accordingly, the normalized
lifetime of the SLC partition corresponds to

Capacitygyprer | Endurancesic

L — Capacityporar, Endurancenic 0.025- 10 =0.5. (2)

WritespurrER O . 5

WritestoraL
This indicates that a device with such a hybrid configuration will last half of the time
of an MLC-only device, which is already significantly shorter than the lifetime of an
SLC-only device.

In order to model analytically the lifetime of a hybrid flash device, we define ¢s;,c and
¢mLc as the proportion of write directed to the buffer and data partitions, respectively,
with ¢s1.c + ¢dmrc = 1. Let psi.c and pyic, respectively, be the ratios of the device’s cells
allocated to the buffer and data. We define Ly and Lp as the buffer and data partition
lifetimes, respectively, functions of the partition size and ratio of writes directed to

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 287

2

1.8

1.6

1.4

1.2

1

0.8

0.6

Lifetime normalized to MLC-only

0.4

0.2

0 1 1 1 1 1 1 1 1 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
<€— Sequential writes Local updates —3»

Ratio of writes directed to the log buffer (¢g c)

Fig. 4. Hard partitions lifetime model for different buffer sizes as a function of the write ratio to the buffer.
The model is normalized to a 2-bit MLC-only flash device lifetime. We illustrate the 5% buffer size lifetime
construct by plotting both the buffer and data partition lifetime components. For large sequential writes,
where an FTL will more likely bypass the buffer, the device lifetime is bounded to the data partition on
the left. Small and frequently updated writes will wear out the buffer first, limiting the device lifetime to
the buffer partition. For reasonably sized SLC buffers, lifetime is reduced by up to one order of magnitude
compared to an MLC-only device.

it. The partition lifetimes are normalized to an MLC-only device’s lifetime that would
receive 100% of the writes. We will use this MLC-only baseline as a lifetime reference
throughout this article. Considering an n-bit per cell technology and an SL.C endurance
comparatively y times larger, the lifetime of the buffer Lg is

Ly = L 5C 3)
n - ¢src
The data partition lifetime is expressed as follows:
LD _ PMLC . (4)
$émLC

A device on hard partitions will die whenever the first of its partition wears out.
Accordingly, a hard partition lifetime corresponds to the minimum out of its partition
lifetime:

LH = min(LB, LD). (5)

Assuming MLC (n = 2 and y = 10), Figure 4 plots Equation (5) and represents the
device lifetime, normalized to an MLC-only device, for different buffer sizes psic and
function of ¢src, the ratio of writes directed to the log buffer. We observe that for rea-
sonable buffer sizes (i.e., ps;,c<10%), the lifetime of hybrid devices drops significantly
when more than 25% of writes are directed to the buffer. Around one-fifth of the cells
should be allocated to the buffer to ensure a lifetime close to the MLC-only’s lifetime.
Because the buffer does not account for capacity, this would result in a significant
density cost.

The main issue of hard partitioning is the inability to share the wear between its
partitions. This, as shown in Figure 4, can seriously compromise the viability of hybrid
devices. In the following section, we introduce Libra, which builds on soft partitions to
share and balance the stress on the whole device and maximize its lifetime.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:8 X. Jimenez et al.

Erased (read as '1")

after 15t programming

cell distribution

\

after 2Nd programming

cell distribution

1
1
1
1
1
i
—] ——T[o[1] —— [1lo] — o]0 Y

Fig. 5. Programming of a 2-bit ML.C. Each bit of a cell is programmed separately. Programming the first bit,
or LSB, requires one to target a single level (staying at the erased level is free) and does not need to be very
precise. Programming the MSB requires one to read the current state of the cell and targets potentially three
different levels, which requires more precision and time. Using cells in SLC mode consists of programming
only the first bit of each cell.

4. LIBRA: SOFT PARTITIONS TO BALANCE WEAR

Libra relies on soft partitions to break the rigidity of hard partitioning by changing the
physical placement of the SLC-mode log buffer depending on the device wear [Jimenez
et al. 2012]. This is made possible by the fact that an ML.C can be managed in software
as an SLC achieving better performance. We have actually used real chips and validated
experimentally that the performance of an MLC managed as an SLC is very similar to
that exhibited by an SLC device. We propose the FTL to keep track of the cumulative
wear (SLC and MLC mode) to decide dynamically the best physical allocation.

4.1. Faster MLC: Managing MLC as SLC

MLC can be used to store a single bit instead of two and recover the performance
and energy consumption benefits of the SLC [Frankie 2007; Grupp et al. 2009].
Figure 5 illustrates the programming sequence of a 2-bit ML.C. Each cell represents
2 bits, namely, the LSB and the MSB, which are allocated to different pages and are
programmed separately. Before starting the actual programming, the cell needs first
to be erased. Then, the LSB is programmed targeting a single voltage level, which is
performed quickly, because this step does not need to be very precise. In a final step,
the MSB is programmed, which requires one to first read the current state (i.e., the
LSB value) and to then push the cell voltage to either of the three different levels (see
solid arrows in the figure). This second programming requires higher precision and it
is typically about four to five times longer than the LSB programming [Grupp et al.
2009].

Interestingly, programming only the LSB of an ML.C shows performances very simi-
lar to an SLC, which motivated previous researchers [Im and Shin 2010] to propose the
use of an MLC as an SLC for a statically allocated log buffer partition, as illustrated
in Figure 1(a). Thereby, performance is obtained at the expense of density in an MLC
device. Such a way of manipulating an MLC is referred to as SLC mode in this article.
In this work, we propose to go one step further and dynamically change the physical
allocation of the buffer to globally balance the wear. Accordingly, when a block allocated

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:9

on-chip
buffer evictions

Cl cor-
uC di uC c1

C2q C2m
iH_H SLC-mode ;._l_H

(a) Hard Partitions (b) Soft Partitions

off-chip
buffer eviction

Fig. 6. Hard and soft partitioning architecture examples. Hard partitioning relies on a mix of SLC and
MLC devices, while soft partitioning is built on a homogeneous MLC fabric. In both examples, the storage
controller is connected to three channels with four flash chips each. On hard partitions, only one chip is an
SLC, which is the only one allocated to the buffer. On the soft partitioning, the buffer can be distributed on
every chip. This enables multiple advantageous features that are not covered in this article, such as cheap
on-chip buffer-to-data migrations, large write bandwidth to the buffer, or a resizable buffer.

to the buffer has accumulated significantly more wear than a data block, both blocks
will be swapped.

4.2. Software-Controlled Log Buffer

Whereas hard partitioning is typically built on heterogeneous SLC and MLC hardware,
the soft-partition scheme applies to a completely homogeneous hardware architecture
made only of one or more MLC chips. Figure 6 illustrates soft and hard partitioning ex-
amples for a possible architecture made of a microcontroller connected to three channels
of several flash chips. In Figure 6(a), the device built on hard partitions has multiple
MLC chips and a single SLC chip, whereas in Figure 6(b), the device is composed exclu-
sively of MLC chips and uses soft partitions. Architecturally, a soft partitioning offers
many benefits. For example, as opposed to hard partitions, the bandwidth to the buffer
is not limited to one channel. Instead, multiple channels can be accessed in parallel
to write the buffer, as well as multiple chips in an interleaved fashion. Furthermore,
the evictions from the buffer do not necessarily require an expensive off-chip migration
but can potentially be performed on-chip. Finally, a soft partitioning does not restrict
the buffer size to a physical constraint; hence, in order to improve performance, the
buffer size could be expanded when the device capacity is not completely used or by
using ML.C mode for some of the buffer blocks, dynamically trading off write latency
for buffer capacity. Yet, in this work, we decided to not cover those advantages and
focus on the raw benefits of the soft partitioning, that is, to be able to write selectively
regions of the flash chip(s) to SLC mode or MLC mode at will, with the intention to
evenly distribute the wear throughout the whole device. While small buffers are likely
to die first for hard partitions, a soft partitioning can spread the localized stress over
the complete device.

Classical wear-leveling algorithms periodically switch cold and hot blocks in order to
even their P/E cycle counts and balance the wear on the whole device. Typically, when
a hot block is evicted from the log buffer and erased, the wear-leveling logic compares
P/E counts of this block with the coldest block (i.e., with the smallest P/E count) and
decides whether to swap them, for example, when the P/E count difference reaches
some threshold. Upon a swap, every page of the cold block is copied into the evicted hot
block, and the cold block is then erased and allocated to the buffer. Figure 7 illustrates
the evolution of a device mixing SLC and MLC mode on soft partitions and shows
how a careful wear balancing can avoid the premature death that is likely to happen

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:10 X. Jimenez et al.

Buffer Data Buffer Data Buffer Data

Flash cells Flash cells
O ! O O O ' O O O o
- - - — - - — -
n =S =S o n =S »n =
SLC wear MLC wear

Fig. 7. Software-controlled log buffer. A practical scenario of a hybrid FTL, where blocks regularly alternate
between SLC and MLC mode in order to balance the overall wear.

in the hard-partitioned architectures proposed in all previous work. Focusing on the
leftmost physical block, one can see how this is initially allocated to the buffer, and thus
managed as an SLC, and then is invalidated and freed from both partitions to be later
allocated to the data partition, managed as an MLC. Such transitions are naturally
triggered by the wear-leveling algorithm. Notice that the wear of the block increases
through time and is a result of both the periods when the block is programmed as an
SLC and as an MLC.

4.3. Libra Implementation

Implementing Libra in hybrid FTLs is very simple, because hybrid FTLs already in-
corporate the data structures and mechanisms required for it. Regarding the mode
identification (i.e., SLC or MLC), hybrid FTLs use 1 bit in the spare bytes of the first
page of a block to differentiate a log buffer block from a data block. Because every log
buffer block is used in SLC mode with Libra, the SLC-MLC classification is implicit
to this differentiation. The only difference with a hybrid FTL using exclusively MLC
mode is that only half of the raw log buffer capacity will be used. Accordingly, whenever
we access a log buffer block, only LSB pages will be referenced.

Although implementing Libra on hybrid FTLs is straightforward, it does not mean
that Libra is bounded to this class of FTLs. In fact, it can perfectly be implemented by
any type of FTL, such as page-level mapped FTLs. The only requirement is to be able
to differentiate blocks allocated in SLC and MLC mode and have a level of decision
in choosing whether data should be written in either of these modes. Generally, page-
level mapped FTLs implement a hot/cold filter, much like hybrid FTLs, to regroup data
likely to be updated soon together in the same blocks, resulting in hot blocks made of
many invalidated pages, which reduces garbage collection overhead. Accordingly, for
those FTLs, data categorized as hot could be written in SLC mode. However, as opposed
to classical hybrid FTLs and hard partitions, the number of hot blocks would not be
bounded to a fixed number. Such flexibility can be exploited by the garbage collection
process to reduce overheads. However, this work will only evaluate the use of Libra in
hybrid FTL architectures, as their performance is not improved by the flexibility of the
SLC mode. Thereby, we can concentrate on the lifetime improvements of our approach.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:11

Finally, the FTL needs to consider a global wear metric that includes the effects of
both the MLC mode and SLC mode to be able to implement a regular wear-leveling
algorithm. Such metric is the foundation of our proposed Libra and will be detailed in
the following subsection.

4.4. Libra Lifetime Model

We evaluate the lifetime of a flash device by the total amount of data written before
wearing out. This lifetime is inversely proportional to the average wear experienced
when writing a bit in a cell. Intuitively, this wear is correlated to the amount of charges
being stored in a cell. Hence, a partial programming (i.e., SLC mode) should generate
less wear than a full programming (i.e., MLC). This is verified experimentally on real
chips in Section 5. Let wsrc be the relative wear generated when writing a bit in SLC
mode with respect to the wear per written bit in MLC. Libra uses blocks alternately
in SLC or MLC mode, while still being able to evaluate the cumulative wear of each
individual block. Hence, the lifetime of a device implementing Libra is a function
of the write ratio directed to the buffer, ¢si,c. In the one extreme, when the MLC
mode is exclusively used (¢s;,c = 0), the device lifetime is trivially equal to an MLC-
only device. In the other extreme, when the SLC mode is exclusively used (¢si,c =
1), the device lifetime is defined by the wear of the SLC writes and corresponds to
&. Note that despite the larger read margin of the SLC mode (larger than MLC, as

discussed in Section 4.1), this lifetime is different than a regular SLC device, because
every block can potentially later be allocated to an MLC and is thereby restrained
to the MLC endurance. The device lifetime is inversely proportional to the average
wear experienced. Given the write ratio directed to the buffer, ¢sic, the average wear
normalized to the MLC wear is

1 — ¢src + wsic - ¢sic = 1 — dsic - (1 — wsre). (6)

Trivially, the lifetime of Libra, Lo, normalized to MLC only is the inverse of
Equation (6), which is
1

1—¢src - (1 —wsLe)’
When wsrc < 1, Libra ensures a lifetime larger than or equal to MLC only. How-
ever, wsic is a parameter that cannot be found in typical specifications of MLC flash
chips, as manufacturers generally do not publish the SLC-mode characteristics in their
documentation. In the next section, we will describe how to extract this parameter ex-
perimentally from actual flash chips.

Lo(¢psic) = (7

5. SLC-MODE CHARACTERIZATION

In order to evaluate the relative wear of SLC mode wgyc with respect to an MLC, we
built an FPGA-based platform to interface ONFI [ONFI workgroup 2013]-compliant
NAND flash chips and we extracted experimentally this parameter for two 30nm class
NAND flash chips from different manufacturers, whose characteristics are listed in
Table I.

The experiment consists of programming continuously a set of 50 flash blocks either
in SLC or MLC mode while periodically measuring the BER. Specifically, we write
random data in every block, read them back to identify and count fault bits, erase
the blocks, and start over. We characterize several rates of SLC mode by setting for
each block a fixed predefined SLC-mode frequency ranging from 0% to 99%. We report
the results in Figure 8 for five different SLC-mode frequencies and for the two chips.
The graphs show how the BER evolves with respect to the P/E cycles for the different
sets of blocks. The BERs are averaged over periods of 100 P/E cycles and, in order to

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:12 X. Jimenez et al.

Table I. MLC NAND Flash Chip Characteristics

Features C1 C2
Total size 32GB 32GB
Pages per block 128 256
Page size 8kB 8kB
Spare bytes 448 448
Read latency 130us 40-60us
LSB write lat. 330us 360us
MSB write lat. 1,750us 1,800us
Erase latency 4ms 3ms
Architecture ABL HBL
2.5¢-04 . . . 2.56-04 . —
0% == A=1.92e-06 4 0% —— A=221e-06
25% —=— 1.67e-06 25% —= 1.84e-06
50% —— 1.40e-06 50% —— 1.48e-06
2.0e-04 950, 1.13¢-06 2.0e-04 750, 1.15¢-06
99% —=— 0.766-06 99% —=— 0.86¢-06
) 04 o " |
© 1.5e-04 Constants: © 1.5e-04 Constants:
5 p=2.59 5 p=2.23
g y= 6.8e-04 % y=_1 .2e-03
= 1004 5° = 10004 [C 2%
08e-04 1 0.5e-04
0 A A 0
0K 5K 10K 15K 20K 0K 5K 10K
Program/Erase cycles Program/Erase cycles

Fig. 8. Comparison of SLC- and MLC-mode cell degradation speed. P/E cycles are applied on five sets of
blocks, each with a different SLC-mode cycle frequency. The BER is evaluated exclusively during MLC cycles.
C2 degrades significantly faster than C1. For each chip, we report the fitted constant parameters and the
variable parameter A, which varies with the SLC-mode ratio. As anticipated, SLC-mode cycles generate
clearly less stress to the cells than MLC cycles.

measure the relative wear of the cells with the same reference for every block, only
MLC cycles are considered. Indeed, the SLC-mode superior reliability systematically
generates fewer bit errors than the MLC. From the figure, we distinctly see an effect
from the SLC-mode frequency on the degradation speed: the more frequently the SLC
mode is used, the slower the degradation becomes.

In order to quantify the effects of the SLC mode on the device wear, we fit our results
on flash degradation models. In previous work related to flash memory characterization
[Mohan et al. 2010], the growing BER in function of P/E cycles is generally modeled by
the power function

BER(x) = ax? + C. (8)

While this function fits the BER of individual pages relatively well, in our case, it did
not when averaging the BER of a set of pages. For the studied flash chips, we found
that adding a term of degree 1 to the power function fits accurately the average BER
and becomes

BER(x) = ax? + yx + C. 9

We observed that the effects of SLC mode will stretch linearly the reference curve on
the P/E cycle axis. Accordingly, we adapt Equation (9) to propose the equivalent form

BER(x) = (Ax)f + yAx + C, (10)

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:13

2.5e-04 2.5e-04
T T T ¥ ci T T c2
Ref —— Ref ——
0% == A=1.10e-07 0% =——A=4.54e-08
25% - 0.96e-07 25% -=— 3.63e-08
2.0e-04 oy, o 0.816-07 2.0e04 500, o~ 2.86e-08 7
75% 0.65e-07 75% 2.18e-08
99% - 0.44e-07 99% —=— 1.62e-08
[} " | @ 04 L .
E 1.5e-04 Baked const: o 1.5e-04 Baked const: Fy
5 L 2 gy]
5 Ly s Coae 54
& 1.0e-04 - & 1.0e-04
0.5e-04 0.5e-04
0 s ; 1 L 0
0K 5K 10K 15K 20K 25K 30K 0K 5K 10K 15K
Program/Erase cycles Program/Erase cycles

Fig. 9. Considering recovery effects. We evaluate the combined effects of recovery and SLC-mode cycling
on cells. We accelerate the recovery by baking periodically the chips. The baking events are marked by the
vertical bars. The recovery effect is significant for C2, whereas for C1 it becomes observable only after 15,000
cycles. The reference curve corresponds to normal cycling without baking episodes. For visibility, the full
data from baked C2 blocks is only reported for the 0% SLC-mode set. Only the data points measured right
after the baking are considered to evaluate the blocks’ degradation speed. The relative wear of SLC mode
remains stable with the recovery process, and it even gets slightly lower for C2, which means that SLC mode
is even less harmful when considering recovery time.

where 8, v, and C are constant for a chip. The A coefficient represents the degradation
speed and varies in function of the SLC-mode frequency. This is the effect that we want
to evaluate here. Fitting every set of data to Equation (10) and fixing the constant
factors to the most satisfying values results in a marginal sum of squared residuals.
The fitted curves and their corresponding parameters are provided in Figure 8. Our
experiment confirms that SLC-mode cycles generate less stress than regular MLC
cycles and allows us to quantify it. Libra will use this information to evaluate blocks’
wear based on their SLC and MLC cycle counts. However, this experiment aggressively
wears out the blocks by continuously writing them, which is not representative of a
realistic usage of the device. Therefore, we propose in the next subsection another
experiment that validates our measurements for a realistic usage.

5.1. Considering the Recovery Factor

Although applying P/E cycles continuously on flash cells allows us to reduce the ex-
periment time, it does not represent a realistic scenario. In a real system, the cells
are written at a much lower frequency, which gives time for trapped charges to leave
the oxide after a while, healing the cells. This phenomenon is known as the recovery
process [Mielke et al. 2006; Mohan et al. 2010].

In order to take into account the recovery effect when evaluating the SLC-mode
wear, we conducted a second experiment, similar to the first one except that it includes
periodic baking times. Every few thousands of P/E cycles, we paused the experiment,
removed the daughter board with the flash chips from the FPGA board, and baked them
at 125°C for 5 hours. Baking the chips allows us to significantly accelerate the recovery
process [Mielke et al. 2006]. From now on, we will refer to the previous experiment as
the fast experiment and the presently described experiment as the baked one.

We report our measurements in Figure 9. The recovery effect is significant for chip C2,
whereas for C1, the effect is noticeable only after 15,000 P/E cycles. The reference curve
is taken from the fast experiment, without SLC-mode cycles or baking periods. For C2,
the BER drops correspond to the baking events (marked by vertical bars), while the
rapid BER growth corresponds to the aggressive P/E cycling. For visibility convenience,

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:14 X. Jimenez et al.

0.8
ignored data point (C1)

06 -

Normalized wear

04 -

0.2 |- —
C1 —@— 0'sc=046
C2 —A— 0.38
C2 baked —El—I 0.35

| | |
0 0.2 0.4 0.6 0.8 1

SLC-mode cycles ratio

0

Fig. 10. Evaluation of SLC-mode wear. We plot the average wear in function of the SLC-mode P/E cycles
ratio as measured on our two chips and provide the corresponding SLC-mode P/E cycle wear coefficient (wg;)
for each dataset. For the C1 chip, the fast and baked experiments gave identical results. Thereby, the baked
experiment data is only shown for C2. We observe for C1 an irregularity when measuring the endurance
at 99% SLC-mode cycle ratio. Specifically, for this chip, the SLC-mode wear is reduced when approaching
extreme SLC-mode ratios, while the wear factor stays constant on lower ratios. This effect is not observed
on C2, where the SLC-mode wear coefficient stays constant. Hence, in order to stick with our simple model,
we ignore this irregular (yet favorable) data point and evaluate for C1 a pessimistic SLC-mode wear that is
accurate for the majority of SLC-mode ratios.

the full C2 baked data is only provided for the set without SLC-mode cycles (0%). We
only consider the BER when cells are freshly baked to fit the data on the model of
Equation (10). Similarly to the fast experiment, we can observe that SLC-mode cycles
infer less stress than regular MLC-mode cycles. Based on those measurements, we will
precisely quantify and discuss the resulting SLC-mode wear in the next subsection.

5.2. SLC-Mode Wear

From our two experiments, we observed that the ratio of SLC-mode cycles has an
effect on the degradation speed, which we quantified with the fitted parameter A. This
parameter is directly proportional to the average wear of a P/E cycle. Hence, the smaller
A s, the less the damage on a cell there is and the larger the endurance. For example,
looking at the fitted parameters of C2, a 75% SLC-mode ratio (A7s = 1.15-10~%) almost
halves the wear compared to a 0% SLC-mode ratio (A¢ = 2.21.107%). Accordingly, blocks
with a 75% SLC-mode ratio will require about two times the P/E cycles to reach the
same BER than a block with a 0% SLC-mode ratio. In order to evaluate wg; ., the
relative wear of an SLC-mode P/E cycle compared to the ML.C, we express the average
wear in function of ¢g; -, the ratio of SLC-mode cycle, as

AvgWear(py o) = 1 — ¢l + sio - spon (11)

with 1 — ¢g; - corresponding to the MLC wear contribution and ¢g; - wg o to the
SLC-mode contribution. For each chip, we fit Equation (11) on the extracted A pa-
rameters with a linear regression to extract wg; . Accordingly, we plot the fitted A
parameters and their corresponding fitted curve in Figure 10 and also report the cor-
responding wg; . The data is normalized to the corresponding 0% SLC-mode ratio. The
standard deviation associated to every data point is very small (less than 2%). The

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:15

T T T T T T T T T
Hard partitions .
1.8 |- LibraC2baked — — 0s5.c=0.70 20% |
Libra C2 —— 0.77

Libra C1 0.90

10%

Lifetime normalized to MLC-only

0 | | | | | | | 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of writes directed to the log buffer (¢g c)

Fig. 11. Libra versus hard partition lifetime. We provide the expected Libra lifetime corresponding to our
chips’ characterization and compare them to hard partitioning. The lifetime is normalized to an MLC-only
device. As opposed to hard partitions, the Libra lifetime is not a function of the buffer size but solely of
the ratio of writes to the SLC buffer. We provide for each Libra lifetime curve the corresponding SLC-mode
wear coefficient wgy,c. The lifetime evaluation corresponding to the baked experiment of C2 is dashed and
indicates that the recovery effect observed in typical flash usage increases the lifetime extension provided
by Libra. Accordingly, the lifetime evaluated from a fast experiment can be considered as a conservative
estimation.

difference between the baked and fast results for C1 is not observable; hence, the C1
baked results have been omitted.

We observe a slightly smaller SLC-mode wear when we let C2 recover, while for C1 the
difference is negligible. In the case of C1, we also notice that the SLC-mode wear is not
constant: the data point out that 99% of the SLC-mode cycle ratio is not aligned with the
previous ones. Specifically, the SLC-mode wear coefficient decreases when approaching
extreme SLC-mode ratios. Conservatively, although this fact would benefit the lifetime
of Libra, we prefer to ignore this particular data point when evaluating wg; - in order to
provide a more accurate SLC-mode wear information on the lowest SLC-mode ratios.

After wg; . is measured, an FTL is then able to convert a mixed SLC- and MLC-mode
wear into a global wear expressed in ML.C P/E cycles. While typical FTLs keep a single
P/E counter for each block in order to balance the wear, Libra needs two counters in
order to differentiate SLC- and MLC-mode P/E counts, which represents a negligible
overhead of about 16 bits per block. Accordingly, Libra expresses the global wear of a
block B with

Wear(B) = Countyc(B) + wg; ¢ - Countgrc(B). (12)

Thereby, when typical FTLs perform their wear leveling based on the ML.C P/E count
of every block, Libra uses the result of Equation (12) instead.

Regarding the lifetime that can be expected by Libra for each chip, we rely on the
lifetime model of Equation (7). First, we need to convert wg; ~ (SLC-mode wear per P/E
cycle, normalized to MLC) into wsrc (SLC-mode wear per written bit, normalized to
MLC). Trivially, knowing that MLC writes 2 bits per cycle, we use

wsLe = 2 wgLo- (13)

Correspondingly, we report the wgr ¢ coefficients in Figure 11 and compare their corre-
sponding lifetime with hard partitioning. Notice that, as opposed to the hard partitions’

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:16 X. Jimenez et al.

Table Il. Benchmark Characteristics

Data Written Footprint Footprint Average Request Request Size

Benchmark [MB] [MB] Ratio Size [kB] Variance [kB]

homesrv 5,566 1,115 0.20 18.6 —13.7/+105.2
copy 3,606 3,598 1.00 395.6 —339.7/+115.3
finl 14,918 527 0.04 3.7 —-1.6/+6.1
fin2 1,860 369 0.20 2.9 —2.0/4+10.1
hm_0 20,968 1,670 0.08 8.3 —5.1/+28.4
mds_0 7,542 339 0.04 7.2 —3.8/+10.1
prn_0 47,068 12,683 0.27 9.7 —7.4/4+-35.2
proj_0 147,729 1,693 0.01 40.9 —31.7/4+22.4
prxy_0 55,088 723 0.01 4.6 —3.3/+24.8
prxy_1 742,211 13,078 0.02 13.1 —6.8/+41.3
rsrch_0 11,077 296 0.03 8.7 —4.2/+19.5
srcl_2 45,206 669 0.01 32.5 —24.7/4+29.4
src2_0 9,563 504 0.05 7.1 —3.6/49.3
stg_ 0 15,452 401 0.03 9.2 —5.2/424.5
stg 1 6,129 405 0.07 7.9 —3.9/+14.9
ts_0 11,611 549 0.05 8.0 -3.6/+21.1
usr_0 13,390 661 0.05 10.3 —5.8/+18.8
wdev_0 7,317 351 0.05 8.2 —4.2/4+15.2
web_0 11,952 711 0.06 8.6 —4.2/4+20.6

lifetime and as described by Equation (7), the Libra lifetime does not directly depend on
the buffer size. Instead, for the same application, a different buffer size would translate
into a new SLC-mode cycles ratio, which directly impacts our lifetime extension. Both
C1 and C2 curves behave almost linearly, and C2 provides more than 10% extra lifetime
for 50% of SLC-mode cycles compared to ML.C only. C1 shows a smaller efficiency and is
slower to provide extra lifetime. Nonetheless, both have their wgy ¢ coefficients smaller
than one and thus show a lifetime that is systematically larger than the MLC-only ref-
erence. Importantly, evaluating the lifetime from a fast experiment can be considered a
worst-case scenario, where blocks are written at unrealistic frequencies, and provides
a conservative lifetime. Accordingly, when we consider significant write ratios to the
buffer and for reasonably sized buffers, Libra provides up to one order of magnitude
more lifetime than hard partitions. In the next section, we stress a simulated flash
device from a set of realistic traces in order to evaluate more precisely the lifetime
extension provided by Libra.

6. RESULTS

In this section, the proposed soft partitioning technique Libra is combined with three
published FTLs and the results of running 19 different data traces from three different
suites are compared to the hard partitioning architecture.

6.1. Experimental Setup

We developed a trace-driven flash simulator in order to measure the execution time and
erase counts of several FTLs executing realistic traces, whose characteristics are listed
in Table II. We generated the “homesrv” and “copy” traces from a tiny server running
on a Linux distribution having its root on a flash storage of 16GB and hosting various
standard services (e.g., file server, mail, web). The “homesrv” trace contains 1 week of
this server’s system storage activity. The second trace, “copy,” was obtained from writing
several gigabytes of MP3 files. The next two traces, “finl1” and “fin2,” were obtained
from the UMass Trace Repository [Bates and McNutt 2007] and produced from OLTP
applications running at a large financial institution. The last 15 traces were taken

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:17

from the MSR Cambridge traces set [Narayanan et al. 2008], which contains 1 week of
their data center activity.

Some of the characteristics of the selected benchmarks are included in Table II. The
ratio between memory footprint and total data written gives an indication of the write
updates’ locality. A value close to zero corresponds to a high locality, and a value close
to one corresponds to no locality. The average and the standard deviation of the request
size indicate how different are the sizes of the different requests. Looking at the traces’
characteristics, we can conclude that “copy” includes large sequential memory requests
and no update locality, “fin2” and “prn_0” have a mild update locality, and the rest of the
traces have a high locality with memory requests of various sizes. Except for our own
traces, most of the traces were gathered from magnetic disks and their file systems
were generally not optimized for flash. For example, traces based on disks using a
sector size of 4kB would have a misaligned address space (i.e., sector addresses are not
divisible by 4kB). Accordingly, we realigned the disks’ address space in order to avoid
having 4kB write accesses systematically overlapping over two flash pages.

We implemented three different hybrid FTLs, namely, FAST [Lee et al. 2007], ROSE
[Chiao and Chang 2011], and ComboFTL [Im and Shin 2010]. FAST is a reference
hybrid FTL, which maps its data partition to the block level. It is light, is simple to
implement, and suits low-cost storage solutions. ROSE is one of the latest improve-
ments of FAST known to these authors. It decreases the garbage collection overhead
by using a more advanced and efficient metric to select victim blocks from the buffer.
Although both those FTLs originally used a regular ML.C buffer, we allocate the buffer
to an SLC, which, as motivated by Section 4.1, increases performance and reduces
power consumption. The only side effect is that twice as many blocks must be allocated
to the buffer, effectively reducing the device capacity, which we assume to pay off for
reasonable buffer sizes. Lastly, ComboFTL includes an SLC buffer that gives multiple
chances to victim data upon eviction. If the victim data is considered as being likely to
be updated, it can be fed back into the buffer, avoiding an expensive migration to the
MLC partition. ComboFTL has a parameter to control the write bandwidth directed
to the buffer and data partitions. Considering hard partitions, while directing writes
to the buffer more often might increase performance, it is also likely to reduce the
device lifetime, and reversely. Thus, as opposed to the other two FTLs, ComboFTL can
trade off performance for lifetime. Finally, the ComboFTL address mapping is built on
a hierarchy of mappings that provides a thinner granularity than the block level: the
data partition is divided into sets of several blocks and each set has its own page-level
mapping table. This mapping reduces the garbage collection overhead compared to
FAST and ROSE but requires more RAM to store the translation table.

The simulated flash characteristics match the C2 chip and the simulated device
has a capacity of 16GB. Except for our own traces, most of the considered traces
come from disks much larger than 16GB (up to 1TB). Still, every trace’s footprint is
smaller than 16GB. Hence, when we partition the original disks’ storage in blocks of
the same size as the considered flash (i.e., 2MB blocks in our case) and consider only the
referenced blocks, every trace fits in the simulated device. We perform this compression
on the block level rather than the sector level in order to not alter data locality, which
would have changed the traces’ behavior. Thereby, the only difference coming from
our relatively small simulated device is that the absolute buffer capacity for a 16GB
disk would be smaller than the original disks’ buffer. A smaller buffer will incur a
higher garbage collection overhead: for the same trace, the victim blocks selected by the
garbage collector will more likely contain valid pages to merge into the data partition.
Consequently, the data partition will be written more often and the write ratio to
the buffer will decrease, which penalizes the soft-partition relative lifetime. Note that
in Figure 11, the lifetime extension of Libra monotonically increases with the ratio of

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:18 X. Jimenez et al.

writes directed to the buffer. Furthermore, as seen in the hard-partition lifetime model,
a write ratio to the buffer that is too high reduces its lifetime dramatically compared
to MLC only. Accordingly, the chosen simulated disk capacity will be advantageous to
the hard partitions, underestimating the lifetime extensions that can be achieved with
our proposed approach.

6.2. Soft- Versus Hard-Partitioned Hybrid FTLs

The traces are executed by each FTL for several buffer sizes ranging from 1% to 20% of
the device’s cells. The traces are executed twice: the first run serves as a warmup and we
collect the result with the second run. We assume that the data partition is originally
fully allocated with valid data. This assumption is conservative compared to a typical
use case and provides a conservative lifetime for Libra. Indeed, a fully allocated device
increases the garbage collection overhead and provides a smaller write ratio to the
buffer. We visit a large spectrum of parameters specific to each FTL and keep only the
most effective combination for each trace. For FAST and ROSE, reducing execution
time will systematically maximize lifetime, whereas for ComboFTL, originally built on
hard partitions, it provides parameters to limit excessive writes to the SLC partition
to try to balance the wear between the two partitions, trading off performance in the
process. Accordingly, we present in our results two parameter sets for ComboFTL:
Comboy, maximizes lifetime, while Combop maximizes performance.

We implemented a classical wear-leveling strategy, where we limit the P/E count’s
difference between the blocks to 100 cycles [Wu and Zwaenepoel 1994]. Whenever the
P/E count difference between a block freshly erased and the block currently having
the lowest P/E count exceeds this limit, the former block replaces the latter, which
is in turn erased and ready to be allocated. On hard partitions, such a wear-leveling
approach must be separately performed on each partition; instead, for Libra, it is
performed globally, similarly to a regular MLC-only device. This difference has a very
small impact on the lifetime and performance difference between Libra and the hard
partitioning. We measured a difference that is systematically below 1% of the execution
time and lifetime. Thus, the execution time of both the Libra and the hard partitioning
scheme is assumed to be the same in our experiments.

Figure 12 shows a normalized lifetime (top) and normalized execution time (bottom)
of the selected FTLs executing the traces of Table II for a buffer size of 5% of the device’s
cells. For every combination of FTL and trace, we report the lifetime corresponding to
Libra (2) and hard partitions (H). The lifetime results are normalized to Combop on
hard partitions and the execution time is normalized to Combop. In this figure, we
report the results of Libra for C2 only.

We observe that the proposed soft partitioning is able to considerably increase the
device lifetime with respect to hard partitioning for the vast majority of the traces
and FTLs. When a lot of stress is put on the buffer, Comboy, is able to extend hard
partitions’ lifetime compared to Combop, sacrificing significantly the performance. On
average, on hard partitions, Comboy, almost doubles the lifetime compared to Combop
while increasing the execution time by 25%, whereas Combop on Libra quadruples
the lifetime on average compared to hard partitions and with similar performance.
Interestingly, maximizing the lifetime for hard partitions does not improve the lifetime
for Libra. Indeed, Comboy, limits the write bandwidth to the buffer, while Libra benefits
from the fact that SLC-erase cycles wear less the cells while improving performance.
When hard partitioning requires trading- off lifetime for performance, Libra is able to
obtain the best of both; therefore, the results for Comboy, on Libra are omitted from the
lifetime results.

The “copy” trace being mostly made of very large sequential accesses, it bypasses
completely the buffer and directs most of the accesses to the data partition. Having the

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:19

FASTH FASTL mmmmm ROSEH mmmm ROSEL mmmm CombopH mmmmm Combo H mmmmm Combop£

0 | | ‘ | | ‘ ‘ ‘

Lifetime normalized to CombopH

homesrv copy fint fin2 hm_0 mds_ 0 pm_0 proj 0 prxy_0 prxy_1 rsich 0 src1 2 s 0 stg 0 stg i ts.0 usi 0 wdev 0 web 0 geomean

FAST H/2 s ROSE H/2 mmmmm CombopH/2 mmmm Combo H mmmm

Execution time normalized to Combop

homesrv copy fint fin2 hm_0 mds_ 0 pm_0 proj_ O prxy_0 prxy_1 rsrch 0 srcl_2 src2 0 stg 0 stg_1 ts 0 usr0 wdev.0 web_0 geo mean

Fig. 12. Lifetime and performance. The results contrast our technique (“Q” versions) versus hard partition-
ing (“H” versions) for three FTLs implemented with a 5% buffer size and normalized to Combop on hard
partitions. Among a large spectrum of parameters specific to each FTL, only the best results are shown.
Combop and Comboj;, maximize performance and lifetime, respectively. In the case of performance, we as-
sume the difference between hard and soft partitioning to be negligible. The soft partition results correspond
to the wgr,c measured from C2. Overall, our soft partitioning significantly increases lifetime for practically
every considered FTL and benchmark.

majority of writes directed to the MLC partition annihilates most of the benefit of an
SLC-MLC combined architecture, and it is not surprising to observe a similar lifetime
between hard and soft partitioning.

6.3. Generalization of Experimental Results

Figure 13 plots over Figure 4 the lifetime results for the different configurations dis-
cussed in the previous subsection. New configurations corresponding to additional log
buffer sizes are also added to the figure.

For applications with high update locality, we observe that increasing the buffer
size reduces the pressure on the data partition and results in higher ratios of writes
to the buffer. This is represented by the data points shifting to the right (i.e., larger
write buffer ratio) when going to larger buffer sizes. In that spectrum of the plot, hard
partitioning is only able to outperform soft partitioning for very large buffer sizes. Such
region is shaded in the figure and annotated as high cost. It should be noted that the
majority of the points outperforming soft partitioning are from FAST and ROSE, which
are, in absolute, less efficient (i.e., worse performance and lifetime) than ComboFTL.
When hard partitioning fails to maximize the device lifetime for sensible buffer sizes,
Libra can extend it by up to 10x. Such region is shaded in the figure and annotated
as typical. The latter corresponds to scenarios that are likely to target a hybrid device
to increase the flash performance and that, importantly, will largely extend the device
lifetime when adopting the proposed soft partitioning.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

28:20 X. Jimenez et al.

T T T
Hard Part. FAST O

18k Libra C2 20% ROSE A |

Libra C1 —— ComboFTL O

Normalized lifetime

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Ratio of writes directed to the log buffer (¢g c)

Fig. 13. Lifetime models populated by benchmark results. This graph shows the result of every best com-
bination of FTLs, traces, and buffer sizes normalized to MLC only. In typical applications including random
access patterns, soft partitions do systematically better. Only configurations characterized by a considerably
higher cost can reach higher lifetimes.

For sequential access patterns, all the buffer sizes present a very low ratio of buffer
writes, which results in marginal differences between the different cases, except for
large buffer sizes. Such region, shaded in the figure and annotated as sequential, does
not benefit from the hybrid device schemes targeted in this article.

7. RELATED WORK

The idea of an SLC-MLC combined architecture has been investigated in previous
work. Grupp et al. [2009] experimentally characterize a set of flash chips reporting
performance and energy figures and notice the variable performance in MLC flash
between LSB and MSB page programmings. Based on those observations, they propose
Mango, an FTL that opportunistically skips MSB pages to enhance the responsiveness
and reduce the total energy consumed. As opposed to the SLC mode presented in our
work, Mango can bypass an MSB page of a block independently of the other MSB pages.
In other words, in Mango, blocks can have valid and bypassed MSB pages at the same
time. Consequently, the SLC-mode reduced wear that we characterized in our study
cannot be considered by Mango to balance the blocks’ wear, which results in a lifetime
reduction of about 35% with respect to MLC only.

Chang [2010] proposes a hybrid SSD combining SLC and MLC chips, which is a
clear example of the hard partitioning discussed in this article. In order to extend
the lifetime, they adapt the ratio of writes directed to the log buffer to balance the
wear on each partition. Thereby, in most cases, performance is reduced. Instead, our
proposed scheme respects the ratio of writes to the log buffer, which should have been
optimized for performance by the FTL, and changes the physical allocation of the log
buffer to balance the device wear, obtaining high performance without compromising
device lifetime.

Murugan and Du [2012] understand the shortcomings of hard partitions in hybrid
devices and developed Hybrot accordingly. It uses an integral controller that limits the
flow to the SLC partition depending on the workload behavior and the hard partitions’
dimensions. Still, it uses hard partitions, and with this limited SLC-write flow, the

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

Libra: Software-Controlled Cell Bit-Density to Balance Wear in NAND Flash 28:21

potential benefits from an SLC cannot be fully exploited as opposed to the use of soft
partitions.

Park et al. [2011] propose HFTL, an FTL based on an SSD architecture very similar
to Chang’s. In particular, they propose techniques to exploit multibank parallelism and
maximize bandwidth. As we do too, they realize that the device lifetime is limited by the
partition with the shortest lifetime; however, they mitigate the problem by sizing the
SLC partition to guarantee a lifetime larger than the MLC partition. This oversizing,
with 10% to 30% of the cells allocated to the log buffer, significantly increases the cost
of the system, not only for the increase in flash cells but also for the large address
translation table associated, which might be prohibitive for some storage classes.

Similarly, Im and Shin [2010] propose ComboFTL, which can be tuned to optimize
either lifetime at the expense of reducing performance or performance at the expense
of reducing lifetime. Figure 12 shows that the combination of ComboFTL optimized for
performance with our soft partitions can simultaneously achieve the longest lifetime
and the best performance.

Instead of relying on an FTL to interface between a common file system and the
flash memory, it is also possible to use specialized file systems that are able to directly
interface the NAND flash interface and capable of supervising the wear leveling and
garbage collection. The JFFS2 [Woodhouse 2001] is an example of such a flash file
system and was extended by Lee et al. [2009] as FlexFS, a flash file system that
enhances the storage responsiveness by selectively choosing to write data into SLC
mode or MLC mode depending on the device’s capacity available. Unlike the hybrid
devices previously mentioned, both cold and hot data are stored in SLC mode, which
increases significantly the garbage collection overhead and consequently sacrifices the
device’s lifetime. Furthermore, the wear of SLC-mode cycles is assumed equal to regular
MLC-mode cycles, which prevents exploiting the flash endurance to its fullest. With a
little effort, FlexF'S could be adapted to implement the mechanisms of Libra to balance
the mixed wear and make better use the device’s endurance.

To the best of our knowledge, this is the first work that introduces a soft SLC/MLC
partitioning of the log buffer present in hybrid FTLs; with Libra, the log buffer is con-
tinuously reallocated to distribute the device wear, thus extending the device lifetime
at virtually no cost.

8. CONCLUSIONS

Flash architectures combining SLC and MLC technologies are targeting new cost-
sensitive applications with large data update locality. Frequent updates benefit from
the superior SLC performance while devices are primarily in MLC mode to take ad-
vantage of the lower cost of MLC devices. However, unbalanced pressure on the SLC
partition may lead to a premature death of the device. In this article, we have pre-
sented Libra, an approach that is robust to unbalanced stress. Using data extracted
from measurements on actual flash chips and making conservative estimations, Li-
bra shows a lifetime at least as long as that of an MLC-only device and shows up to
10 times longer lifetime compared to known SLC-MLC approaches. Furthermore, this
advantage comes at practically no extra cost and without any performance loss, which
is particularly interesting for high-volume consumer products.

REFERENCES

Ken Bates and Bruce McNutt. 2007. OLTP Application I/O. Retrieved from http:/traces.cs.umass.edu/
index.php/Storage/Storage.

Li-Pin Chang. 2010. A hybrid approach to NAND-flash-based solid-state disks. IEEE Trans. Comput. 59, 10
(Oct. 2010), 1337-1349.

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage

28:22 X. Jimenez et al.

Yuan-Hao Chang, Jen-Wei Hsieh, and Tei-Wei Kuo. 2007. Endurance enhancement of flash-memory storage,
systems: An efficient static wear leveling design. In Design Automation Conf. San Diego, CA, 212-217.

Mong-Ling Chiao and Da-Wei Chang. 2011. ROSE: A novel flash translation layer for NAND flash memory
based on hybrid address translation. IEEE Trans. Comput. 60, 6 (June 2011), 753-766.

Hyunjin Cho, Dongkun Shin, and Young Ik Eom. 2009. KAST: K-associative sector translation for NAND
flash memory in real-time systems. In Design Automation and Test in Europe. 507-512.

Roohparvar Frankie. 2007. Single level cell programming in a multiple level cell non-volatile memory device.
US Patent 11/298,013. (June 14, 2007).

Laura M. Grupp, Adrian M. Caulfield, Joel Coburn, Steven Swanson, Eitan Yaakobi, Paul H. Siegel, and Jack
K. Wolf. 2009. Characterizing flash memory: Anomalies, observations, and applications. In ACM/IEEE
Int. Symp. Microarchitecture. New York, NY, 24-33.

Laura M. Grupp, John D. Davis, and Steven Swanson. 2012. The bleak future of NAND flash memory. In
USENIX Conf. on File and Storage Technologies. San Jose, CA.

Soojun Im and Dongkun Shin. 2010. ComboFTL: Improving performance and lifespan of MLC flash memory
using SLC flash buffer. J. Syst. Archit. 56, 12 (Dec. 2010), 641-653.

Xavier Jimenez, David Novo, and Paolo Ienne. 2012. Software controlled cell bit-density to improve NAND
flash lifetime. In Design Automation Conf. San Francisco, CA, 229-234.

Jesung Kim, Jong Min Kim, Sam H. Noh, Sang Lyul Min, and Yookun Cho. 2002. A space-efficient flash
translation layer for CompactFlash systems. IEEE Trans. Consum. Electron. 48, 2 (May 2002), 366—-375.

Sungjin Lee, Keonsoo Ha, Kangwon Zhang, Jihong Kim, and Junghwan Kim. 2009. FlexFS: A flexible flash
file system for MLC NAND flash memory. In USENIX Annual Technical Conf. San Diego, CA.

Sungjin Lee, Dongkun Shin, Young-Jin Kim, and Jihong Kim. 2008. LAST: Locality-aware sector translation
for NAND flash memory-based storage systems. ACM SIGOPS Operating Syst. Rev. 42, 6 (Oct. 2008),
36—42.

Sang-Won Lee, Dong-Joo Park, Tae-Sun Chung, Dong-Ho Lee, Sangwon Park, and Ha-Joo Song. 2007. A log
buffer-based flash translation layer using fully-associative sector translation. ACM Trans. Embedded
Comput. Syst. 6, 3 (July 2007), Article No. 18, 18:1-29.

Rino Micheloni, Luca Crippa, and Alessia Marelli. 2010. Inside NAND Flash Memories. Springer.

Micron. 2010. Bad Block Management in NAND Flash Memory. Retrieved from http:/www.micron.com/
products/support/technical-notes/.

Neal Mielke, Hanmant P. Belgal, Albert Fazio, Qingru Meng, and Nick Righos. 2006. Recovery effects in the
distributed cycling of flash memories. In IEEE Int. Reliability Physics Symp. Proc. San Jose, CA, 29-35.

Vidyabhushan Mohan, Taniya Siddiqua, Sudhanva Gurumurthi, and Mircea R. Stan. 2010. How I learned to
stop worrying and love flash endurance. In Proc. USENIX Conf. Hot Topics in Storage and File Systems.
Boston, MA.

Muthukumar Murugan and David H. C. Du. 2012. Hybrot: Towards improved performance in hybrid SLC-
MLC devices. In IEEE Int. Symp. Modeling, Analysis Simulation of Computer and Telecommunication
Systems. Arlington, Virginia, USA, 481-484.

Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write off-loading: Practical power
management for enterprise storage. In Proc. USENIX Conf. File and Storage Technologies. San Jose,
CA, 253-267.

ONFI Workgroup. 2013. Open NAND Flash Interface 3.2. Retrieved from http:/onfi.org/specifications/.

Jung-Wook Park, Seung-Ho Park, Charles C. Weems, and Shin-Dug Kim. 2011. A hybrid flash translation
layer design for SLC-MLC flash memory based multibank solid state disk. Microproc. Microsyst. 35, 1
(Feb. 2011), 48-59.

David Woodhouse. 2001. JFFS: The journalling flash file system. In Proc. Linux Symp. Ottawa, Ontario,
Canada.

Michael Wu and Willy Zwaenepoel. 1994. eNVy: A non-volatile, main memory storage system. In 6th Int.
Conf. on Architectural Support for Programming Languages and Operating Systems. San Jose, CA,
86-97.

Received November 2013; revised March 2014; accepted June 2014

ACM Transactions on Embedded Computing Systems, Vol. 14, No. 2, Article 28, Publication date: February 2015.

http://www.micron.com/products/support/technical-notes/
http://www.micron.com/products/support/technical-notes/
http://onfi.org/specifications/

