
Des Autom Embed Syst (2009) 13: 115–137
DOI 10.1007/s10617-008-9034-y

Optimistic chordal coloring: a coalescing heuristic
for SSA form programs

Philip Brisk · Ajay K. Verma · Paolo Ienne

Received: 21 July 2008 / Accepted: 27 October 2008 / Published online: 11 November 2008
© Springer Science+Business Media, LLC 2008

Abstract The interference graph for a procedure in Static Single Assignment (SSA) Form
is chordal. Since the k-colorability problem can be solved in polynomial-time for chordal
graphs, this result has generated interest in SSA-based heuristics for spilling and coalescing.
Since copies can be folded during SSA construction, instances of the coalescing problem
under SSA have fewer affinities than traditional methods. This paper presents Optimistic
Chordal Coloring (OCC), a coalescing heuristic for chordal graphs. OCC was evaluated on
interference graphs from embedded/multimedia benchmarks: in all cases, OCC found the
optimal solution, and ran, on average, 2.30× faster than Iterated Register Coalescing.

Keywords Algorithms · Performance · Coalescing · Chordal graphs

1 Introduction

Register allocation is one of the most widely studied NP-Complete problems in computer
science. Register allocation is typically broken down into two sub-problems: spilling and
coalescing, both of which are NP-Complete [3–5, 19, 31, 33]. Spilling is the problem of
partitioning all of the variables that are live at each point in the program between regis-
ters and memory. Coalescing is the problem of assigning variables to registers such that:
(1) no variables whose lifetimes overlap are assigned to the same register; and (2) the mini-
mum (weighted) number of register-to-register copy instructions remain in the program (or,
equivalently, the maximum number of copies are removed).

For many years, register allocation and other related storage assignment problems have
been modeled using graph coloring, another well-known NP-Complete problem [12, 13, 17,
18, 29], or its inverse, clique partitioning [39]. Although graph coloring is NP-Complete
in the general case, there are many classes of graphs for which polynomial-time coloring

This paper is an extension of a paper that appeared at CASES 2007 [10].

P. Brisk (�) · A.K. Verma · P. Ienne
Swiss Federal Institute of Technology, Lausanne (EPFL), Switzerland
e-mail: philip.brisk@epfl.ch

mailto:philip.brisk@epfl.ch

116 P. Brisk et al.

solutions are known. Two such classes of particular importance are chordal graphs [20] and
interval graphs [26].

Recently, there has been interest in performing register allocation using intermediate rep-
resentations using Static Single Assignment (SSA) Form; pruned SSA Form [14] is assumed
throughout the paper. In particular, several research groups have recently proven that the
interference graph for a program in SSA Form belongs to the class of chordal graphs [2,
8, 24]; Brisk and Sarrafzadeh [9] also proved that the interference graph for a program in
Static Single Information (SSI) Form, an extension of SSA Form, belongs to the class of in-
terval graphs. Unfortunately, both spilling and coalescing remain NP-Complete for chordal
and interval graphs [4, 5]; spilling is NP-Complete for straight-line code with no control
flow [19].

That being said, SSA Form does have some advantages that could be useful for register
allocation. First and foremost, the problem of spill-free register allocation can be solved
optimally in polynomial-time: i.e., if the target architecture has k registers, then a minimum
coloring of the interference graph determines whether spilling is necessary; if spilling is
unnecessary, then a solution to the coalescing problem must be found that eliminates as
many copy instructions as possible. A second benefit is that all of the copy operations in the
program can be eliminated during the conversion to SSA Form [6]. Copies are only inserted
during the translation out of SSA Form to eliminate ϕ-functions: conditional parallel copy
operations that are an integral part of SSA Form [16]. The number of copies to be eliminated
via coalescing in SSA Form is significantly less than traditional register allocation.

1.1 Contribution

This paper contributes a novel heuristic for the coalescing problem for SSA Form programs
whose interference graph is chordal. The heuristic is called Optimistic Chordal Coloring
(OCC), and it ensures that a legal coloring is found while attempting to minimize the
(weighted) number of copy operations that remain in the program after coloring the in-
terference graph. The worst-case time complexity of OCC is O(|V |2).

OCC was tested on a set of interference graphs generated from a set of Mediabench [30]
and MiBench [23] applications and compared against the well-established Iterated Register
Coalescing (IRC) heuristic [21] and an optimal formulation (OPT) of the coalescing prob-
lem as an integer linear program (ILP) [22]. In all of our test cases, OCC found the optimal
solution to the problem, while running more than twice as fast as IRC, on average.

1.2 The coalescing problem

Consider variables, u and v, connected by a copy operation v ← u. If both u and v are
assigned to the same register, r , then the copy will become r ← r—an identity operation
that does not change the state of the processor—a NOP which can be eliminated.

Let V be the set of variables in the program. Two variables interfere if their lifetimes
overlap. Let E ⊆ V × V be the set of interference edges, i.e. e = (v1, v2) ∈ E if v1 and v2

interfere. Let A ⊆ V ×V −E be the set of affinity edges, i.e., a = (v1, v2) ∈ A if and only if
v1 and v2 do not interfere and there is a copy operation v1 ← v2 or v2 ← v1 in the program.
If runtime profiling information is available, and the copy is known to execute w times, then
the affinity edge is given a weight, denoted w(a) = w(u,v), i.e. a = (v1, v2,w).

The graph G = (V ,E,A) is called an interference graph. It can be constructed as de-
scribed in the textbook by Cooper and Torczon [15]. A k-coloring is a function color : V →
{1,2, . . . , k}. A k-coloring is legal if for every interference edge (v1, v2) ∈ E, color(v1) �=

Optimistic chordal coloring: a coalescing heuristic for SSA form 117

color(v2); otherwise, it is illegal. An affinity edge a = (v1, v2) is satisfied by a k-coloring
color if color(v1) = color(v2). An unsatisfied affinity edge requires the insertion of a copy
operation v1 ← v2, or v2 ← v1; a satisfied affinity edge eliminates the copy by assigning v1

and v2 to the same register.
In general, the problem of determining whether or not a graph is k-colorable is NP-

Complete; however, in the case of the coalescing problem, we are given an interference
graph that is known to be k-colorable, where k is the number of registers in the target archi-
tecture. The goal of the coalescing problem is to find a k-coloring of the interference graph
that maximizes the sum of the weights of the satisfied affinity edges.

In SSA Form, all copies can be folded; however, affinities are introduced by ϕ-functions,
an integral part of the SSA Form. To understand this paper, the reader does not need to under-
stand the details of SSA Form or how ϕ-functions are instantiated; it suffices to understand
the concept of an affinity edge.

The details of the translation out of SSA Form can be found in the paper by Hack and
Goos [24]. Similar to their model, we assume that swap instructions are available for SSA
elimination, when needed. The details are beyond the scope of this work.

1.3 Paper organization

Section 2 introduces preliminary notation and concepts; Sect. 3 summarizes related work on
coalescing; Sect. 4 presents the OCC heuristic; Sect. 5 presents the experimental evaluation
and results; Sect. 6 concludes the paper.

1.4 Statement of extension of prior work

The version of OCC presented here is an extension of prior work [10]. Material that is
unique to this paper includes: the example interference graphs taken from Mediabench and
MiBench applications; the discussion of illegal pseudo-coalescing (Sect. 4.4.2); the BMCS-
2 method to compute a PEO (Sect. 4.3); the full-blown color assignment and propagation
method (Sect. 4.5.2); complexity analyses of OCC (Sect. 4.6); new experimental results
based on a new implementation of OCC (Sect. 5).

2 Preliminaries

2.1 Graph notation

Let G = (V ,E,A,w) be an interference graph as introduced in Sect. 1.1. χ(G) is defined to
be the chromatic number of G, i.e., the smallest value k for which there is a legal k-coloring
for G. For vertex v, let: N(v) be the set of interference neighbors of v;NA(v) be the set
of affinity neighbors of v;RA(v) be the set vertices reachable from v by affinity edges; and
CA(v) be a set of vertices with which v has been pseudo-coalesced (see Sect. 4.2). Let S be
a set of vertices. Then:

N(S) =
⋃

v∈S

N(v) − S. (1)

118 P. Brisk et al.

Fig. 1 k-cycles C1, . . . ,C11

Fig. 2 Pseudocode for MCS [38] (a) and optimal chordal color assignment [20] (b)

2.2 Chordal graphs

A k-cycle is the graph Ck = (Uk,Ek), where Uk = {v0, v1, . . . , vk−1} and Ek = {(vi,

v(i+1)mod k)|0 ≤ i ≤ k − 1}. Figure 1 lists the k-cycles C1, . . . ,C11. Graph G = (V ,E) is
chordal if it has no subgraph isomorphic to a Ck for k ≥ 4; other equivalent definitions of
chordal also exist. The interference graph of an SSA Form procedure is provably chordal [2,
8, 24].

An Elimination Order (EO) is a one-to-one and onto function σ : V → {1,2, . . . , | V |};
given an EO, vertices are renamed so that σ(vi) = i. Let Vi = {v1, v2, . . . , vi} and Gi =
(Vi,Ei) be the subgraph of G induced by Vi . For vertex vi : Ni(vi) = N(vi) ∩ Vi,N

i
A(vi) =

NA(vi) ∩ Vi , and Ci
A(vi) = CA(vi) ∩ Vi .

Vertex v is simplicial if N(v) forms a clique. A Perfect Elimination Order (PEO) is an
EO where vi is simplicial in Gi for 1 ≤ i ≤ |V |. Graph G is chordal if and only if G has
a PEO. A PEO can be computed in O(|V | + |E|) time by an algorithm called Maximum
Cardinality Search (MCS) [38] shown in Fig. 2(a). Given a PEO, G is colored optimally
in O(|V | + |E|) time using an algorithm shown in Fig. 2(b) [20]. Colors are assigned to
vertices in PEO order. Then color(vi) is the smallest color not assigned to a vertex in Ni(vi);
optimality ensues because Ni(vi) is a clique.

3 Related work

In graph coloring register allocation, coalescing refers to the process of merging vertices in
the interference graph, often to eliminate copy operations via register assignment. Given an
affinity edge (u, v) ∈ A, coalescing u and v ensures that they receive the same color. Let uv

be the resulting vertex. Then:

N(uv) = N(u) ∪ N(v), (2)

NA(uv) = [NA(u) ∪ NA(v)] − N(uv). (3)

Optimistic chordal coloring: a coalescing heuristic for SSA form 119

Fig. 3 Coalescing can increase the degree of the merged vertex and the chromatic number of the graph (a);
it can also decrease the degree of a vertex adjacent to the two vertices that have been merged (b); and it can
cause a chordal graph to become non-chordal, while increasing the chromatic number of the graph (c); in
some cases, it is impossible to coalesce every affinity edge (d)

If affinity edges (u, x) and (v, x), exist then w(uv,x) = w(u,x) + w(v,x).
Coalescing has both positive and negative side effects [32, 40]. In Fig. 3(a), |N(u)| =

|N(v)| = 1 and χG = 2 before coalescing, and afterwards |N(uv)| = 2 and χG = 3. In
Fig. 3(b), |N(u)| = |N(v)| = 2 before coalescing, and |N(uv)| = 1 afterwards. In Fig. 3(c)
coalescing causes a chordal graph to become non-chordal and increases χG from 2 to 3.
Figure 3(d) shows that it is generally impossible to coalesce all affinity edges.

Let k be the number of registers in the target processor and assume that χG ≤ k. Three
variants of the coalescing problem are NP-Complete [5]:

Aggressive coalescing [12, 13] tries to satisfy as many affinity edges as possible without
constraining χG; in register allocation, aggressive coalescing can increase the number of
spills. Aggressive coalescing can also minimize the number of copy instructions required
to eliminate ϕ-functions during translation out of SSA Form. Heuristics for aggressive coa-
lescing have been proposed by Sreedhar et al. [37], Budimlic et al. [11], Rastello et al. [35]
and Boissinot el al. [1].

Conservative coalescing [7, 21, 25, 27] attempts to find a legal k-coloring of G such that
χG ≤ k and as many affinity edges as possible are satisfied.

Optimistic coalescing [32] begins with an aggressively coalesced interference graph G,
and performs a de-coalescing phase that tries to minimize the number of affinity edges de-
coalesced while ensuring that χG ≤ k. In their study, Park and Moon [32] found that opti-
mistic coalescing eliminated more copies than conservative coalescing.

Previous heuristics for conservative and optimistic coalescing are based on vertex merg-
ing. In SSA Form, the fact that the interference graph is chordal yields a stronger guarantee
of k-colorability than traditional coalescing methods, because merging vertices may not pre-
serve the chordal graph property; the color assignment procedure guarantees a legal coloring
because it uses the same correctness invariant as Gavril’s [20] chordal coloring algorithm.
Pseudo-coalescing, introduced in Sect. 4.2, mimics the behavior of coalescing but without
merging vertices. Thus, the OCC heuristic has stronger conservative guarantees than conser-
vative coalescing, while retaining the benefits of optimistic coalescing in terms of solution
quality.

4 Optimistic chordal coloring

The Optimistic Chordal Coloring (OCC) heuristic consists of six sequential steps, described
in Sects. 4.1–4.5:

(1) Simplify: Remove vertices of low degree incident on no affinity edges.
(2) Pseudo-coalesce: Find (independent) sets of affinity-connected vertices.
(3) PEO: Compute a PEO; favor vertices incident on high-weight affinity edges.

120 P. Brisk et al.

(4) Color Assignment: Assign colors to vertices in PEO order maintaining Gavril’s invari-
ant; color assignment is biased by the sets of pseudo-coalesced vertices.

(5) Refinement: Attempt to improve the solution via local improvement.
(6) Unsimplify: Assign colors to the vertices removed in Step (1).

The key points of the heuristic are as follows:

• Steps (3) and (4) exploit the fact that chordal graphs are k-colorable.
• Step (2) is cognizant of the fact that traditional coalescing heuristics often find good solu-

tions. Step (4) tries to assign the same color to all vertices that have been pseudo-coalesced
with one another; but it cannot guarantee that such a coloring is found.

• Steps (1), (3), and (6) exploit the observation that only vertices incident on affinity edges
contribute to the objective value of the solution; all other vertices must be colored to
ensure legality; if possible, deferring the assignment of colors to these vertices tends to
yield better conservative solutions.

Sections 4.1–4.5 describe the 6 steps in detail; the complexity of OCC is analyzed in
Sect. 4.6. The interference graph G = (V ,E,A) is assumed to be chordal throughout.

4.1 Steps (1)/(6): simplify/unsimplify

Let v ∈ V be a vertex with |N(v)| < k. Then the subgraph of G induced by V − {v} is
k-colorable if and only if G is k-colorable [28]; it is also chordal. v is called a simplifiable
vertex. Simplify repeatedly removes each simplifiable vertex v with |NA(v)| = 0 from G

and pushes v onto a stack. Steps (2)–(5) then compute a k-coloring of the resulting chordal
interference graph. Unsimplify repeatedly pops a vertex v from the stack and reattaches it to
G. When processing v, |N(v)| ≤ k − 1, so a color is available for v.

Some variation of simplification has been used during register allocation dating back to
the first graph coloring allocator by Chaitin et al. [13] and Chaitin [12]. Our approach to
simplification is the same as that of Hack and Grund [22].

Condition |NA(v)| = 0 ensures that removing v cannot degrade the solution quality. Let
u ∈ N(v). If |NA(u)| > 0, then color(u) influences the solution quality; assigning a color to
v before u can only constraint the spectrum of colors available for u when a color is chosen;
thus, removing v is beneficial at best and benign at worst. If |N(u)| = k and |NA(u)| = 0,
then the removal of v renders u simplifiable.

In Steps (2)–(5), all vertices in V are unsimplifiable or are incident on at least one affinity
edge.

4.2 Step (2): pseudo-coalescing

The purpose of pseudo-coalescing is to find a set of affinity-connected vertices; these sets are
used to guide the color assignment phase in Step (4). Unlike traditional coalescing methods,
these vertices are not merged. CA(v) is defined to be the set of vertices with which v is
pseudo-coalesced. Section 4.2.1 presents Optimistic Pseudo-coalescing [9], an adaptation
of Park and Moon’s [32] heuristic for aggressive coalescing. Section 4.2.2 introduces Illegal
Pseudo-coalescing, in which CA(v) is defined to be the set of vertices reachable from v via
affinity edges.

4.2.1 Optimistic pseudo-coalescing

Initially, let CA(v) = {v} for each vertex v with |NA(v)| > 0; the invariant that CA(v) is an
independent set is maintained throughout. First, the set A of affinity edges is sorted in de-

Optimistic chordal coloring: a coalescing heuristic for SSA form 121

Fig. 4 An interference graph fragment taken from the frame_ME function in the mpeg2enc bench-
mark. After optimistic pseudo-coalescing, CA(v0) = {v0, v2, v9, v10, v16, v17, v95, v96, v97, v102, v103},
CA(v3) = {v3}, and CA(v98) = {v98}, which leaves affinity edges (v0, v3) and (v0, v98) unsatisfied

scending order of weight; affinity edges are processed in sorted order. Consider affinity edge
(v1, v2,w). If CA(v1) = CA(v2), then v1 and v2 are already pseudo-coalesced; otherwise, v1

and v2 are pseudo-coalesced if and only if CA(v1)∪CA(v2) is an independent set; it suffices
to check that CA(v1) ∩ N(CA(v2))(or, equivalently, N(CA(v1)) ∩ CA(v2)) is empty. Sorting
the affinity edges in advance favors pseudo-coalescing of high-weight affinity edges over
lower-weight affinity edges.

Figure 4 shows a fragment of the interference graph for the procedure frame_ME
taken from the MPEG-2 encoder benchmark [30]; many vertices are not shown, for clar-
ity. Pseudo-coalescing affinity edges in sorted order, yields independent sets: CA(v0) =
{v0, v2, v9, v10, v16, v17, v95, v96, v97, v102, v103},CA(v3) = {v3}, and CA(v98) = {v98}; affin-
ity edges (v0, v3) and (v0, v98) are unsatisfied. This solution is optimal.

4.2.2 Illegal pseudo-coalescing

The use of one NP-Complete problem to solve another is a poor strategy; thus, the use of
aggressive coalescing, which is NP-Complete in its own right [5], within a heuristic to solve
conservative coalescing, is a poor strategy: even if aggressive coalescing is solved optimally,
it does not guarantee an optimal solution to conservative coalescing. Thus, the time spent on
finding an aggressive solution would be better spent searching for a conservative solution
directly. To this end, the illegal pseudo-coalescing strategy replaces the optimistic strategy
with a much more efficient computation, sidestepping this issue completely.

Let RA(v) be the set of vertices reachable from v by affinity edges. Under illegal pseudo-
coalescing: CA(v) = RA(v) for each vertex v. When illegal coalescing is performed, CA(v)

may not be an independent set; thus, illegal pseudo-coalescing does not attempt to solve the
aggressive coalescing problem; for example CA(v0) in Fig. 4 would contain every vertex
in G, including those that interfere. This is not, however, problematic: there is no actual
requirement that CA(v0) be an independent set. Color assignment and propagation, in Step
(4), is given leeway to de- and re-coalesce vertices in an adaptive fashion when one color
cannot be assigned to all of the vertices in CA(v).

The details of illegal pseudo-coalescing cannot be understood without first understanding
the color assignment heuristic, and are therefore delayed until Sect. 4.4.6.

122 P. Brisk et al.

4.3 Step (3): compute PEO

A graph is chordal if and only if it has a PEO; in fact, it may have many distinct PEOs.
Gavril’s [20] algorithm can use any PEO to compute a k-coloring. The quality of coalescing
solutions produced by OCC, however, which account for affinity edges, is highly dependent
on the PEO used. The ideal PEO, intuitively, assigns colors to vertices incident on high-
weight affinity edges as early as possible during its execution.

A Biased Maximum Cardinality Search (BMCS) [9] makes the following modification to
the MCS algorithm. Referring to Fig. 2(a), let M be the set of vertices v such that T (v) is
maximum (line 3). For vertex m ∈ M , let W ∗(m) be the sum of the weights of the affinity
edges incident on m. When there is a choice between multiple vertices with maximum T -
values, W ∗ is used as a tiebreaker, and the vertex with the maximum w∗ value is chosen. No
other modifications are required.

A second alternative, BMCS-2, is a minor modification to BMCS. For vertex m ∈ M , let
W ∗

2 (m) be the sum of the weights of the affinity edges incident on m such that the other
vertex incident on the affinity edge precedes m in the PEO. When there is a choice between
multiple vertices with maximal T -values, W ∗

2 is used as a tiebreaker; W ∗ is used as a second
tiebreaker if multiple vertices remain.

In most cases, BMCS and BMCS-2 find the same solution; however, we identified one
case where BMCS-2 does better. This example, once again, can only be understood in the
context of Step (4), and is delayed until Sect. 4.4.7.

4.4 Step (4): color assignment and propagation

Gavril’s [20] algorithm for optimal chordal coloring does not account for affinity edges and
their weights when assigning colors. OCC’s color assignment and propagation is an adapta-
tion of Gavril’s algorithm to perform better coalescing; it borrows the following correctness
invariant: a legal k-coloring is maintained for the induced subgraph Gi = (Vi,Ei) when ver-
tex vi is assigned a color. OCC’s method, however, is completely different because it must
account for affinity edge weights.

Section 4.4.1 describes a simplified version of the color assignment heuristic. Sec-
tion 4.4.2 introduces the process of de- and re-pseudo-coalescing, which are unique contri-
butions of this paper; examples are shown in Sects. 4.4.3 and 4.4.4. Section 4.4.5 describes
the full heuristic in detail. Lastly, Sects. 4.4.6 and 4.4.7 present the examples alluded to
in Sects. 4.2 and 4.3; these examples illustrate situations where illegal pseudo-coalescing
outperforms optimistic pseudo-coalescing and where BMCS-2 outperforms BMCS.

4.4.1 Simplified color assignment heuristic

Let CA(vi) be the set of vertices with which vi is pseudo-coalesced. OCC makes every effort
to assign the same color to all of the vertices in CA(vi); unfortunately, this is not always
possible. Let vi be the first vertex in CA(vi) to receive a color c = color(vi). There must be
an affinity edge a = (vi, vj ,w), j > i, such that vj ∈ CA(vi); otherwise, there would be no
incentive, from the perspective of satisfying affinity edges, to assign the same color to vi

and the other vertices in CA(vi). vi receives a color before vj since j > i.
When processing vj , the ideal color to select would be c, since this choice would satisfy

a. This is similar to biased coloring [7]. Unfortunately, there may be a vertex vl, i < l < j ,
that interferes with vj and has color(vl) = c. Thus, after assigning c to vi , we also wish
to bias the choice of color assigned to vl away from c. To do this, OCC optimistically

Optimistic chordal coloring: a coalescing heuristic for SSA form 123

Fig. 5 Illustration of color assignment and propagation: a pre-assigned color cannot be confirmed for v5.
v1 and v5 are pseudo-coalesced, as are v2 and v4. Color 1 is assigned to v0 and v1, and then propagated to
v5 (a); color 2 is assigned to v2 and propagated to v4; color 3 is assigned to v3 (b). v4 confirms color 2; v5
cannot confirm color 1 due to the interference with v0; given a choice between colors 2 and 3, v5 selects color
2 due to the affinity with v4 (d)

propagates color c to all vertices in CA(vi), including vj , when c is assigned to vi . OCC
may change the color when vj is processed; this does not violate the invariant since vj /∈ Vi .
The choice of color assigned to vl is biased away from c. If no other colors are available for
vl when vl is processed, then c will be chosen for vl; the fact that interfering vertices vl and
vj have the same color do not violate the invariant since vj /∈ Vl;vj , in this case, will not
receive color c.

Let free_colors be the set of colors available for vi , as used in traditional chordal color
assignment; i.e.: free_colors contains the colors not assigned to vertices in Ni(vi). Let opti-
mistic_free_colors be the set of colors not assigned to vertices in N(vi). optimistic_free_
colors accounts for colors that have been propagated to vertices occurring after vi in
the PEO. If possible, a color from optimistic_free_colors is selected for vi ; if opti-
mistic_free_colors is empty, then a color from free_colors is selected instead. Since the
interference graph is chordal, free_colors is non-empty.

When c is propagated to vi , it is assumed that c is preferred when choosing color(vi).
If c ∈ free_colors, then c is assigned to vi; this process is called confirmation; other-
wise vi cannot confirm its pre-assigned color c. If there is an affinity edge (vi, vk,w), and
color(vk) = c′, then c′ can be chosen for vi as long as c′ ∈ free_colors.

Figure 5 shows an example, where optimistic pseudo-coalescing is used. Initially, v1 and
v5 are optimistically pseudo-coalesced, as are v2 and v4. v0 and v1 are assigned color 1,
which is then propagated from v1 to v5. v2, v3, and v4 are assigned colors 2, 3, and 2. v5,
however, cannot confirm 1; 2 is chosen instead to satisfy affinity edge (v4, v5).

4.4.2 De- and re-pseudo-coalescing

If vi cannot confirm c, then another color should be chosen for vi . Although not explicitly
stated above, this effectively de-pseudo-coalesces vi from the other vertices in CA(vi). As-
signing color 2 to v5 in Fig. 5(c) de-pseudo-coalesces v5 from v1; furthermore, the choice
to assign color 2 to v5 effectively re-pseudo-coalesces v5 with v4 and v2.

Let vi be the first vertex in CA(vi) to be assigned a color, c; then c is propagated to the
other vertices in CA(vi). If later, c cannot be confirmed for some vertex vj ∈ CA(vi), then
vj is de-pseudo-coalesced from CA(vi), yielding a new set, LA(vj) = CA(vi) − {vj }. We
then attempt to re-pseudo-coalesce vj with a new set of pseudo-coalesced vertices: CA(vk)

for some other vertex vk /∈ LA(vj), where adding vj to CA(vk) satisfies at least one affinity.
It may also be possible to attract some affinity neighbors of vi that belong to LA(vj) into
CA(vk); details of this process are presented in the following examples.

124 P. Brisk et al.

Fig. 6 Part of the interference graph for the sym_decrypt function, used to illustrate re-coalescing. The
optimal solution satisfies all affinity edges except (v1, v4,23); leaving (v1, v24,22) and (v0, v4,1) unsatisfied
is an equivalent optimal solution

4.4.3 Example 1: sym_decrypt

Figure 6 shows part of the interference graph of the sym_decrypt function of the pegwit
benchmark [30]. Assume that illegal pseudo-coalescing is used: CA(v0) contains all of the
vertices. First, color 1 is assigned to v0 and propagated to the vertices in CA(v0). Since v1

interferes with v0, v1 is de-pseudo-coalesced from CA(v0) and color 2 is assigned to v1.
Now, consider vertex v65; the only affinity edge incident on v65 is (v1, v65,2); there is no

benefit to keeping color 1 assigned to v65, since this color can no longer satisfy this affinity.
Instead, v1 is able to de-pseudo coalesce v65 from CA(v0) and re-pseudo-coalesce v65 with
CA(v1).

Continuing with the example, v4 and v24 remain in CA(v0). v4 is incident on two affinity
edges (v0, v4,1) and (v4, v23,23), in addition to (v1, v4,23). Keeping 1 as v4’s color satisfies
the first two affinity edges, whose weight totals 24; changing v4’s color to 2 would satisfy the
third affinity edge whose weight is 23; therefore, v4 keeps its color and remains in CA(v0).

In PEO order, v4, v11, v16 and v23 all confirm pre-assigned color 1. v24 cannot confirm
color 1 since it interferes with v23. Therefore, v24 de-pseudo-coalesces itself from CA(v0);
the only other set of pseudo-coalesced vertices incident on v24 is CA(v1); therefore, v24 is re-
pseudo-coalesced with CA(v1). v24 then invites v55 to de-pseudo-coalesce from CA(v0) and
re-pseudo-coalesce with CA(v1). Retaining v55’s membership in CA(v0) yields a net benefit
of 1, due to affinity edge (v35, v55,1), while de-pseudo-coalescing and re-pseudo-coalescing
with CA(v1) yields a net benefit of 22 due to affinity edge (v24, v55,22); the latter option is
preferable, so v55 is removed from CA(v0) and inserted into CA(v1); by similar reasoning,
v35 is removed from CA(v0) and inserted into CA(v1) as well.

As the heuristic proceeds, color 2 is confirmed for v35, v55, and v65, in order. This yields
an optimal solution, wherein the only unsatisfied affinity edge is (v1, v4,23); another optimal
solution leaves affinity edges (v0, v4,1) and (v1, v24,22) unsatisfied.

4.4.4 Example 2: RPE_grid_positioning

A fragment of the interference graph fragment for function RPE_grid_positioning from the
gsm benchmark [30] is shown in Fig. 7. Assume that illegal pseudo-coalescing is used:
CA(v2) contains all of the vertices in the interference graph.

First, color 1 is assigned to vertex v2, and is propagated to all other vertices in
the graph. v13 and v22 confirm color 1; v31 takes color 2 instead, due to an interfer-
ence with v22. Vertices v53 and v59 are successfully attracted into CA(v22), so CA(v2) =
{v2, v13, v22, v46, v47, v52, v57} and CA(v31) = {v31, v53, v59}. v46 then confirms color 1;v47

cannot confirm color 1 due to interference edge (v46, v47);v47 is de-pseudo-coalesced from
CA(v2), and successfully attracts v57 as well. At this point, CA(v2) = {v2, v13, v22, v46, v52},
CA(v31) = {v31, v53, v59} and CA(v47) = {v47, v57}. v52, v53, v57, and v59 then confirm their

Optimistic chordal coloring: a coalescing heuristic for SSA form 125

Fig. 7 Part of the interference
graph for the
RPE_grid_positioning function
used to illustrate de- and
re-coalescing. The optimal
solution leaves affinity edges
(v22, v57,9161) and
(v22, v53,167) unsatisfied

colors in order. This yields two unsatisfied affinity edges: (v22, v53,167) and (v22, v57,9161):
the optimal solution.

4.4.5 Detailed description of color assignment and propagation

Assume that vertex vi cannot confirm its pre-assigned color, so it must be de-pseudo-
coalesced from CA(vi); recall that LA(vi) = CA(vi) − {vi}. Let vj /∈ LA(vi) be a vertex
that is affinity-adjacent to vi . Here, we entertain the possibility of adding vi to CA(vj). vi

cannot be added to CA(vj) if vi interferes with at least on vertex in CA(vj), or if vi has an
interference neighbor vk such that color(vk) = color(vj); otherwise, it is possible to add vi

to CA(vj). There may be multiple sets of pseudo-coalesced vertices to which vi is affinity-
adjacent; in this case, we must select the best one in terms of satisfying affinity edges.

The gain associated with pseudo-coalescing vi with CA(vj), under the assumption that
doing so is legal, is as follows:

gain
(
vi,CA

(
vj

)) =
∑

vk∈CA(vj)

(vi ,vk)∈A

w (vi, vk) (4)

vi is added to the set of pseudo-coalesced vertices CA(vj) such that gain(vi,CA(vj)) is
maximal. If there is no set CA(vj) with positive aggregate gain, then vi is inserted into a
singleton set, i.e.: CA(vi) = {vi}. If the vertices in the chosen set have been colored, then vi

is assigned that color; if they have not been colored, then an appropriate color is assigned to
vi and that color is propagated to all of the vertices in CA(vi).

Now, we should entertain the possibility of de-pseudo-coalesecing affinity neighbors of
vi from their current sets and re-pseudo-coalescing them with CA(vi), as was done in the
case of vertices v1 and v24 in Fig. 6, and v31 and v47 in Fig. 7; this is done only if doing so
increases the number of satisfied affinity edges.

The process itself is a breadth-first search. Initially, each affinity neighbor u of vi is
inserted into an empty queue, denoted Q. At every step, a vertex is dequeued from Q.
A test, described below, determines whether u is de-pseudo-coalesced from its current set
and re-pseudo-coalesced with CA(vi), or not. If u passes the test and is brought into CA(vi),
then each affinity neighbor of u that is neither enqueued nor belongs to CA(vi) already is
enqueued. The process repeats until Q is empty. This process may bring many of the vertices
in LA(vi) into the new CA(vi).

Without loss of generality, let us dequeue vertex u. If u interferes with any vertex in
CA(vi), or if u is assigned the same color as any vertex in N(CA(vi)), then u cannot be
pseudo-coalesced with CA(vi). Otherwise, it is perfectly legal to de-pseudo-coalesce u from
CA(u) and re-pseudo-coalesce u with CA(vi); however, this should only be done if doing so
improves the objective function.

126 P. Brisk et al.

Let component_gain(u) be the gain associated with leaving u in CA(u) and component_
gain(vi) be the gain associated with bringing u into CA(vi):

component_gain(u) =
∑

x∈NA(u)∩CA(u)

w(u, x), (5)

component_gain (vi) =
∑

y∈NA(u)∩CA(vi)

w (u, y) . (6)

If component_gain(u) > component_gain(vi), then it is beneficial to remove vi from CA(vi)

and insert vi into CA(u); otherwise, vi remains in CA(vi).
For example, refer back to processing vertex v53 in Fig. 7, which is attracted to

CA(v31). component_gain(v53) = w(v22, v53) + w(v53, v59) = 167 + 6384 = 6551; mean-
while, component_gain(v31) = w(v31, v53) = 29072 > component_gain(v53). Therefore,
v53 de-pseudo-coalesces with CA(v53) and re-pseudo-coalesces with CA(v31).

Likewise, when v47 attracts v57 in Fig. 7, component_gain(v57) = w(v22, v57) = 9161,
while component_gain(v47) = w(v47, v57) = 35802. Therefore, v57 de-pseudo-coalesces
with CA(v57) and re-pseudo-coalesces with CA(v47).

4.4.6 Example 3: susan_smoothing

A fragment of the interference graph of the procedure susan_smoothing, taken from the su-
san benchmark [23], will be used to illustrate the advantage of illegal over optimistic pseudo-
coalescing; it is shown in Fig. 8. The optimal solution leaves affinity edges (v0, v31) and
(v56, v60) unsatisfied. Since many affinity edges have the same weight, optimistic pseudo-
coalescing may produce different results, depending on the order in which the edges are
processed. The worst possible solution is CA(v0) = {v0, v31, v33, v35, v53, v56, v60}, which
leaves 4 unsatisfied affinity edges: (v29, v31,1), (v30, v31,1), (v58, v60,1), and (v59, v60,1).
In this case, color 1 is assigned to v0 and then propagated to the remaining vertices in
CA(v0); color 1 is then confirmed when each vertex is processed during color assignment.

Under illegal pseudo-coalescing, CA(v0) initially contains all of the vertices in Fig. 8. v0

is assigned color 1;v29 and v30, which both interfere with v0 are assigned color 2. When v29

is assigned color 2, it de-pseudo-coalesces from CA(v0) and tries to attract v31 into CA(v29);
the attraction fails, because v0 and v30, the two other affinity neighbors of v31, belong to
CA(v0). Assigning color 2 to v30 also de-pseudo-coalesces v30 from CA(v0). Thus, at this
point, CA(v29) = {v29} and CA(v30) = {v30}. v30 successfully attracts v31 into CA(v30), since
v31 has two affinity neighbors with color 2 (v29 and v30) and one with color 1 (v0); v31 then
successfully attracts v29 into CA(v31) = CA(v30). The same thing happens on the left-hand-
side of Fig. 8 with vertices v58, v59, and v60, yielding an optimal solution.

Fig. 8 Part of the interference
graph for the susan_smoothing
function, used to illustrated
re-coalescing

Optimistic chordal coloring: a coalescing heuristic for SSA form 127

Fig. 9 Part of the interference
graph for the jpeg_fill_bit_buffer
function

4.4.7 Example 4: jpeg_fill_bit_buffer

Figure 9 shows a fragment of the interference graph of the jpeg_fill_bit_buffer function from
the jpeg_6a benchmark [30]. The optimal solution leaves affinity edges (v6, v14,6053) and
(v12, v20,71) unsatisfied. Vertices are listed in their BMCS ordering; this example will show
that BMCS-2 yields a better solution.

The difference between the PEOs generated by the BMCS and BMCS-2 heuristic in-
volves vertex v6 and v8. v0 is the first vertex selected; v1, . . . , v5 are not shown in Fig. 9. In
the traditional BMCS, W ∗(v8) = 12357 > W ∗(v6) = 25116, so v6 precedes v8; in BMCS-2,
W ∗

2 (v6) = 0 < W ∗
2 (v8) = 12356, v8 would precede v6 in the PEO. We assume that illegal

pseudo-coalescing is used in both cases.
Consider the vertices in BMCS order. First, vertex v0 receives color 1, which is prop-

agated to the other vertices; v5 and v6 confirm color 1. Due to the interference edge
(v6, v8), v8 does not confirm color 1 and choses color 2 instead, which leaves affinity edge
(v0, v8,12356) unsatisfied: this is sub-optimal. v8 is unable to attract v0 to CA(v8), due to
the weights of the other three affinity edges incident on v0, which sum to 29195: all of the
vertices incident on three edges still belong to CA(v0). In the PEO produced by BMCS-2,
σ(v8) = 6, σ (v6) = 8; the other vertices keep the same order as the BMCS. v8 confirms
color 1, while v6 is forced to accept color 2. v6 then successfully attracts v12 and v23 into
CA(v6); the remaining vertices then confirm their colors and the optimal solution is found.

4.5 Refinement

OCC guarantees a legal coloring but does not guarantee optimality in terms of the number
of affinities satisfied. Two refinement techniques introduced in the next two subsections, can
be used to try to locally improve the coalescing solution of OCC.

4.5.1 Local refinement

Local refinement processes each affinity edge a = (u, v,w) where u and v are assigned
different colors. If swapping the colors assigned to u and v causes an illegal coloring, then
a is discarded. If the swap is legal, then the swap is accepted if it improves the solution
quality; otherwise, the swap is suppressed. After deciding to accept or reject the swap, the
next affinity edge is processed.

4.5.2 Aggressive refinement

Like its local counterpart, aggressive refinement processes affinity edges one-by-one, only
refining those that are not satisfied; in this case, the refinement process is much more com-
plicated and has a greater time complexity per miscolored affinity edge.

128 P. Brisk et al.

Fig. 10 Illustration of aggressive refinement. Two sets of pseudo-coalesced vertices are shown (a); after
aggressive refinement, vertices v4 and v5 can be de-pseudo-coalesced from CA(v7) and re-pseudo-coalesced
with CA(v0) because they do not interfere with any vertices in CA(v0); v6 and v7 remain in CA(v7) after
pseudo-coalescing because they interfere with v1 ∈ CA(v0)

Let a = (u, v) be an unsatisfied affinity edge. The intuitive explanation for the aggres-
sive refinement step, illustrated in Fig. 10, is as follows: we consider the possibility of de-
coalescing all of the vertices in CA(v) that do not interfere with any vertices in CA(u), and
re-psuedo-coalescing all of these vertices into CA(u). This is done only if it improves the
objective function; it may also be necessary to find a new color to assign to the vertices in
CA(u) after this transformation, in order to ensure legality.

The first step is to compute a set, free_colors, which contains a spectrum of colors
which we may choose to assign to u and v during refinement. Ideally, we will find a
new color that can be assigned to both u and v, thereby satisfying a, that can also be
assigned to some of the vertices in CA(u) and CA(v), while ensuring a legal coloring
and improving the objective function. Initially, free_colors = {1,2, . . . , k}. For each vertex
n ∈ N(CA(u)) ∪ N(CA(v)), color(n) is removed from free_colors. If free_colors becomes
empty, we discard a and move on to the next unsatisfied affinity edge; otherwise, we proceed
with a. free_colors is no longer needed after this point. It simply evaluates the feasibility of
finding a color assignment that satisfies a given the colors assigned to the remainder of the
interference graph.

Let Tu,v = N(CA(u)) ∩ CA(v); these are the sets of vertices belonging to CA(v) that
cannot possibly be re-pseudo-coalesced with CA(u) due to interferences, e.g.: if v0 = u

and v4 = v in Fig. 10(a), then Tu,v = {v6, v7} due to the interference edges. Aggressive
refinement tries to de-pseudo-coalesce all of the vertices belonging to CA(v) − Tu,v and
re-pseudo-coalesce them with CA(u) instead.

Let t be a vertex in Tu,v . The interfering vertex affinity cost of t , denoted I (t), effectively
measures the force with which the vertices in Tu,v hold onto the remaining vertices in CA(v).
I (t) is the sum of the weights of the affinity edges between t and its affinity neighbors in
CA(v), i.e.:

I (t) =
∑

x∈NA(t)∩CA(v)

w(t, x). (7)

The aggregate interfering vertex affinity cost, denoted I ∗, is the sum of the interfering vertex
affinity costs over all vertices in Tu,v :

I ∗ =
∑

t∈Tu,v

I (t). (8)

I ∗ effectively measures the estimated benefit of doing nothing, i.e.: leaving the vertices in
CA(v) − Tu,v pseudo-coalesced with Tu,v .

Optimistic chordal coloring: a coalescing heuristic for SSA form 129

The counterpart to I ∗, which measures the strength with which vertices in CA(u) attract
vertices belonging to CA(v) − Tu,v is called the merged component affinity cost, and is
denoted M∗. Let z ∈ CA(v) − Tu,v . The merged component affinity cost associated with z,
denoted M(z), is computed as follows:

M(z) =
∑

x∈NA(z)∩CA(u)

w(x, z). (9)

M∗ is then computed as follows:

M∗ =
∑

z∈CA(v)−Tu,v

M(z). (10)

If M∗ > I ∗, then it is beneficial to de-pseudo-coalesce the vertices in CA(v) − Tu,v from
CA(v) and re-pseudo-coalesce them with CA(u). Let C∗

A(u) = CA(u) ∪ (CA(v) − Tu,v) be
a new name given to CA(u) after the re-pseudo-coalescing. In general, we may not be able
to simply assign the same color used for CA(u) to the vertices in CA(v) − Tu,v due to in-
terferences. Thus, we entertain the possibility of recoloring all of the vertices in C∗

A(u) and
Tu,v in order to ensure legality. If v ∈ C∗

A(u), then a new color must be found for the vertices
in CA(v) ∩ Tu,v as well. This is done using free_colors arrays, as described previously, for
both C∗

A(u) and Tu,v : if a free color is found for the vertices in C∗
A(u) and for Tu,v , then the

aggressive refinement has been successful for affinity edge a; otherwise, it is rejected since
it cannot find a legal coloring.

Aggressive refinement is not commutative with respect to both u and v. If aggressive
refinement fails, the process can be repeated for a with the roles of u and v reversed.

If aggressive refinement fails, the process can be repeated for affinity edge a′ = (v,u),
which is the same affinity edge, but with the roles of u and v reversed.

4.5.3 Example of aggressive refinement

Figure 11 shows a fragment of the interference graph for the procedure get_dht from the
jpeg_djpeg benchmark. The table on the right-hand-side of Fig. 11 shows the color assign-
ment before and after aggressive refinement. Initially, four affinity edges are not satisfied:
(v8, v11,348), (v29, v32,64), (v46, v48,8) and (v39, v48,4); after aggressive refinement, the
optimal solution leaves three affinity edges unsatisfied: (v8, v11,348), (v29, v32,64), and
(v43, v48,4).

During aggressive refinement, unsatisfied affinity edges are processed in descending or-
der of weight. Aggressive refinement fails for the first three affinity edges, but triggers re-
coloring when processing the unsatisfied affinity edge (v39, v48,4).

Let u = v39 and v = v48. CA(u) = {v0, v8, v9, v25, v29, v30, v39, v46, v49, v55, v58, v61} and
CA(v) = {v43, v48}; Tu,v = {v43} due to the interference edge (v39, v43). I ∗ = 4, which is the
weight of affinity edge (v39, v48,4); there is no other affinity edge incident on v39. M∗ = 12,
due to affinity edges (v39, v48,4) and (v46, v48,8).

All of the vertices in CA(u) are initially assigned color 0; this color is unavailable for
v48: although not shown in Fig. 11, v48 interferes with another vertex whose color is 0. The
search for a free color for the set C∗

A(u) = CA(u) ∪ {v48} finds 10 as a free color. v43 retains
its originally assigned color, 9.

130 P. Brisk et al.

Fig. 11 Illustration of aggressive refinement on a portion of the interference graph for the procedure get_dht
in the jpeg_djpeg benchmark. The color assigned to each vertex is shown before and after aggressive refine-
ment; miscolored affinity edge (39,48,4) triggers the re-coloring

4.6 Time complexity

4.6.1 Time complexity of simplification

The time complexity of simplification is O(|V |+ |E|): each vertex must be examined once:
when a vertex is removed, the degree of its neighbors is reduced, following which the neigh-
bor can be tested for simplifiability.

4.6.2 Time complexity of optimistic pseudo-coalescing

The time complexity of optimistic pseudo-coalescing is O[|A|(log |A| + |V | + |E|)]. The
time complexity of sorting the affinity edges is O(|A| log |A|), the time complexity of a
comparison-based sort; alternatively, if the maximum affinity edge weight is W , then Count-
ing Sort, which has a time complexity of O(|A| + W), can be used [36]. Each affinity edge
must be processed, and the time complexity of enumerating the neighborhood N(S) of each
set of pseudo-coalesced vertices S is O(|V | + |E|): the time complexity of a depth- or
breadth-first search; this justifies the O[|A|(|V | + |E|)] term.

4.6.3 Time complexity of illegal pseudo-coalescing

The time complexity of illegal pseudo-coalescing is O(|V | + |A|): the RA sets are found by
a breadth/depth-first search through the affinity edges of the interference graph.

4.6.4 Time complexity of color assignment and propagation

The time complexity of Gavril’s chordal coloring algorithm is O(|V | + |E|). Let P rep-
resent the complexity of the color propagation step for each vertex. Thus, the overall time
complexity is O(|V |P + |E|); the complexity of the P is discussed next.

During color assignment and propagation, u is the vertex that has been removed from the
queue; we must process each affinity neighbor v of u to determine whether or not v can be
added to CA(u), which requires computing the component_gain terms. The time complexity

Optimistic chordal coloring: a coalescing heuristic for SSA form 131

of both of these steps is T = O[|N(CA(u))|+|CA(u)|+|N(v)|+|NA(v)|], ignoring vertices
that have already been enqueued; for the sake of simplicity, we assume that these complexity
terms are the same for each vertex.

If q is the total number of vertices that are enqueued during color propagation, so P =
O(qT) and the overall complexity is O(|V |qT + |E|). In actuality, there is a different T

term for each vertex, since the four components of the T term vary from vertex-to-vertex
(and may change dynamically as vertices are moved from one CA set to another). It follows
that qT = O(|V |), a loose bound, since at most |V | vertices are processed each time color
propagation is performed. At most O(|A|) vertices will be uncovered during the breadth first
search; however, |N(CA(u))| + |NA(v)| = O(|V |) in the worst case, since |N(CA(u))| and
|NA(v)| include their interference neighbors. Therefore, we report the overall complexity as
O(|V |2 + |E|) = O(|V |2).

4.6.5 Time complexity of local refinement

The time complexity of processing an affinity edge a = (u, v) is O[|N(u)| + |NA(u)| +
|N(v)| + |NA(v)|]. Local refinement examines the interference neighbors of u and v to
determine the legality of the swap, and the affinity neighbors of u and v to incrementally
compute objective function resulting from the swap. In the worst case, O(A) affinity edges
are processed. The complexity term for a single affinity edge is aggregated over all of the
unsatisfied affinity edges. In the worst case, it becomes O(|A||V |).

4.6.6 Time complexity of aggressive refinement

The time complexity of aggressive refinement is O(|A||V |). In the worst case, O(|A|) affin-
ity edges must be processed, under the assumption that only a constant number of affinity
edges are satisfied to begin with. For each unsatisfied affinity edge, O(|V |) vertices must be
processed in order to compute the I and M terms.

4.6.7 Time complexity of unsimplify

During unsimplification, each vertex v is popped from the stack and reattached to the graph;
it is given the smallest color not assigned to its neighbors. At most |N(v)| neighbors are
processed, and |N(v)| + 1 colors are examined as possibilities for v; in aggregation, at most
|E| interferences edges in G will be processed. Since at most |V | vertices are on the stack
to begin with, the time complexity is O(|V | + |E|).

4.6.8 Time complexity of OCC

From Sects. 4.6.1–4.6.7, the time complexity of OCC is O(|V |2 + |A||V |).
All of the copies in a procedure can be eliminated during SSA construction; thus, the only

affinities that remain are those due to ϕ-functions. In practically all cases we have observed,
|A|
 |V |; under this assumption, the complexity simplifies to O(|V |2).

5 Experimental results

A set of embedded and multimedia benchmarks taken from the Mediabench [30] and
MiBench [23] benchmark suites were selected for evaluation. The Machine SUIF compiler

132 P. Brisk et al.

Table 1 Number of registers
used for each benchmark Benchmark Registers Benchmark Registers

adpcm_coder 14 jpeg_cjpeg 18

adpcm_decoder 14 jpeg_djpeg 39

blowfish 14 mpeg2dec 21

crc32 8 mpeg2enc 45

dijkstra 6 patricia 9

FFT 13 pegwit 13

g721_decoder 16 sha 10

g721_encoder 16 susan 20

gsm 16

was used to compile an instrumented version of each application to collect profiling data (ba-
sic block execution frequencies) and to generate the interference graphs with affinity edges
weighted based on the profiling information gathered during compilation. Each procedure
was converted to SSA Form before generating its interference graph, which is provably
chordal.

As our goal is to study the coalescing problem, we did not perform spilling. For each
application let G = {G1, . . . ,Gn} be the set of interference graphs for each procedure; we
targeted each application toward a RISC architecture with R = max{χ(G1), . . . , χ(Gn)}
general purpose registers. R is the minimum number of registers that ensure no variables
must be spilled, except possibly across procedure calls. Since each procedure is in SSA
Form, each Gi is chordal, so χ(Gi) can be computed in polynomial-time [20].

Table 1 lists each benchmark and the number of registers in the corresponding target
architecture. Each interference graph was colored 3 times: first using the OCC heuristic;
second, using the well-established iterated coalescing (IRC) heuristic [21]; and third, using
an optimal ILP formulation (OPT) [22].

Table 2 shows the number of copies dynamically executed for each benchmark, i.e.: the
weighed sum of the unsatisfied affinity edges after coloring; the number of dynamically exe-
cuted copies (based on the profiling information) is shown for OPT; the number of additional
copies executed is shown for IRC and OCC. OCC was able to find the optimal coloring so-
lution for each interference graph in the study; IRC was able to find optimal solutions for
many, but not all of the benchmarks.

In Table 2, OCC was implemented with BMCS-2, illegal pseudo-coalescing, and both
refinement stages (aggressive followed by local). To better understand the behavior of OCC,
Table 3 presents results using four different configurations with refinement suppressed:
OCC-BI (BMCS-2 + illegal pseudo-coalescing), OCC-BO (BMCS-2 + optimistic pseudo-
coalescing), OCC-MI (MCS+ illegal pseudo-coalescing), and OCC-MO (MCS+ optimistic
pseudo-coalescing).

OCC-MI performed poorly: its results are substandard compared to the others, suggesting
that illegal pseudo-coalescing is only useful in conjunction with a BMCS that tries to ensure
that vertices incident on high-weight affinity edges are assigned colors as early as possible.
OCC-BO and OCC-MO found the same results for all benchmarks: all but three benchmarks
were solved optimally, and, across all benchmarks, only executed 7 copies in excess of the
optimal solution.

Beginning with a set of optimistic pseudo-coalesced vertices, the lack of interferences
between vertices that were pseudo-coalesced together minimized the amount of de- and
re-pseudo-coalescing; the quality of the results, however, was dependent of the quality of

Optimistic chordal coloring: a coalescing heuristic for SSA form 133

Table 2 Number of dynamically
executed copy instructions for
each benchmark. − means that
IRC/OCC found optimal
solutions; +X indicates that IRC
found solutions that execute X

copies in excess of the optimal
solution

Benchmark OPT IRC OCC

adpcm_rawcaudio 6995016 – –

adpcm_rawdaudio 6995016 – –

blowfish 0 – –

crc32 53322406 – –

dijkstra 0 – –

fft 8209 – –

g721_decode 0 – –

g721_encode 0 – –

gsm 1909187 +2990 –

jpeg_cjpeg 541326 – –

jpeg_djpeg 272636 +6283 –

mpeg2dec 2115 – –

mpeg2enc 95197 – –

patricia 1820 – –

pegwit 48 +24 –

sha 442 – –

susan 2 – –

Table 3 Number of dynamically
executed copies for different
configurations of the OCC
heuristic

Benchmark OCC-BI OCC-BO OCC-MI OCC-MO

adpcm_rawcaudio – – – –

adpcm_rawdaudio – – – –

blowfish – – – –

crc32 – – – –

dijkstra – – – –

fft – – – –

g721_decode – – – –

g721_encode – – – –

gsm – – +792005 –

jpeg_cjpeg – – – –

jpeg_djpeg +21 +4 +742 +4

mpeg2dec – – – –

mpeg2enc – – +224 –

patricia – – +66971 –

pegwit – +1 +1 +1

sha – – – –

susan – +2 +1 +2

the optimistic pseudo-coalescing; as there are known dependencies on the order in which
affinity edges are pseudo-coalesced, this situation seems less than ideal, even if it the results
were generally favorable.

OCC-BI found the optimal solution for all benchmarks except jpeg_djpeg, for which it
executed 21 copies in excess of the optimal solution. With local, but not aggressive, re-

134 P. Brisk et al.

Fig. 12 The overhead of performing refinement

finement the number of excess copies was reduced to +13; with aggressive, but not local,
refinement, the number of excess copies was reduced to +8; with both types of refinement,
the optimal solution was achieved.

Next, we measured the overhead of performing refinement. We colored each interference
graph with the OCC-BI heuristic, with and without (both types of) refinement; for each
measurement, each interference graph was colored 5000 times and the average runtime was
taken. The results are shown in Fig. 12. The IRC and OCC heuristics were run on a Dell
Latitude D810 laptop with an Intel Pentium M processor running at 2.0 GHz with 1.0 GB of
RAM; the operating system used was Fedora Core 5.

The overhead of refinement ranged from 1.00 (susan) to 1.14 (dijkstra). In general, the
largest overheads were observed for the benchmarks with the smallest overall runtimes (ad-
pcm_rawcaudio, adpcm_rawdaudio, crc32, dijkstra, sha); these benchmarks all had very
few interference graphs, all of which were colored quite quickly, thereby amplifying the im-
pact of refinement. For the remaining benchmarks, the overhead of refinement was 1.03 or
less.

The overhead of refinement is clearly tolerable for traditional “offline” compilation; how-
ever, for just-in-time (JIT) compilers, the overhead of refinement can only be justified by
its savings in runtime execution. For OCC-MI, refinement saves a total of 21 dynamically
executed instructions; this cannot be justified; as the compiler executes, the cost of sav-
ing/restoring caller/callee-save registers for the call to one (of the two) refinement func-
tion(s) alone will easily eclipse 21 instructions, let alone the runtime cost of performing the
refinement.

It should also be noted that a JIT compiler is likely to use a faster register allocator, such
as linear scan [34], or one of its variants, that sacrifices solution quality in order to reduce
compile time; in particular, linear scan does not use an interference graph, and does not
perform coalescing at all.

Table 4 compares the runtime of the OCC heuristic with the runtime of OPT and IRC.
IRC and OCC were run using the same setup as described above. The experiments using
OPT were performed by Sebastian Hack on a Dell Latitude D420 laptop with an Intel Core
Duo U2500 processor running at 1.2 GHz and with 2.0 GB of RAM; the operating system
was Ubuntu Feisty, and CPLEX 7.0 was used to solve the ILP.

Optimistic chordal coloring: a coalescing heuristic for SSA form 135

Table 4 Runtime (normalized to
OCC) of OPT, IRC, and OCC Benchmark OPT IRC OCC

adpcm_rawcaudio 904 3.47 1

adpcm_rawdaudio 2841 3.39 1

blowfish 3111 2.05 1

crc32 139 1.28 1

dijkstra 188 1.12 1

fft 573 2.69 1

g721_decode 2394 3.36 1

g721_encode 3611 3.25 1

gsm 1403 2.21 1

jpeg_cjpeg 1659 2.13 1

jpeg_djpeg 10144 2.37 1

mpeg2dec 2661 2.03 1

mpeg2enc 2088 4.17 1

patricia 442 1.73 1

pegwit 140881 0.871 1

sha 670 2.88 1

susan 279256 0.105 1

Average 26645 2.30 1

On average, the runtime of IRC was 2.3× greater than that of OCC. For two benchmarks,
pegwit and susan, IRC was faster: significantly, in the case of susan. OPT, however, ran
considerably slower than OCC: 139× to 279,256×. This is to be expected, given that, absent
a proof that P = NP, the optimal solution to NP-Complete problems can only be computed in
exponential worst-case time. It should be noted that the implementation of the OCC heuristic
used for these experiments is based on a different code base than an earlier version [9] that
was published previously.

6 Conclusion

The optimistic chordal coloring (OCC) coalescing heuristic was introduced for chordal
graphs, which arise from SSA Form programs. OCC is an extension of Gavril’s [20] al-
gorithm that computes a minimum coloring of a chordal graph. OCC maintains the same
correctness invariant as Gavril’s algorithm, which offers stronger conservative guarantees
than traditional mechanisms of conservative coalescing. Through pseudo-coalescing, rather
than traditional coalescing via merging, OCC is able to identify sets of affinity-related ver-
tices to which it would ideally like the assign the same color, while preserving the chordal
graph property and ensuring that a k-coloring is found. On a set of interference graphs from
a set of multimedia and embedded benchmarks, OCC found the optimal coalescing solution
in all cases, and ran 2.30× faster than iterated register coalescing.

References

1. Boissinot B, Hack S, Grund D, De Dinechin BD, Rastello F (2008) Fast liveness checking for SSA-form
programs. In: Proceedings of the 2008 IEEE/ACM symposium on code generation and optimization,
Boston, MA, USA, 6–9 April 2008

136 P. Brisk et al.

2. Bouchez F (2005) Register allocation and spill complexity under SSA. MS thesis, Technical Report
RR2005-33, ENS-Lyon, Lyon France, August 2005

3. Bouchez F, Darte A, Guillon C, Rastello F (2006) Register allocation: what does the NP-Completeness
proof of Chaitin et al. really prove? Or revisiting register allocation: why and how? In: Proceedings of
the 19th international workshop on languages and compilers for parallel computing, New Orleans, LA,
USA, November 2006

4. Bouchez F, Darte A, Rastello F (2007) On the complexity of register coalescing. In: Proceedings of
the international symposium on code generation and optimization, San Jose, CA, USA, March 2008,
pp 102–114

5. Bouchez F, Darte A, Rastello F (2007) On the complexity of spill everywhere under SSA form. In: Pro-
ceedings of the ACM SIGPLAN/SIGBED conference on languages, compilers, and tools for embedded
systems, San Diego, CA, USA, June 2007, pp 103–112

6. Briggs P, Cooper KD, Harvey TJ, Simpson LT (1998) Practical improvements to the construction and
destruction of static single assignment form. Softw Pract Exp 28:859–881

7. Briggs P, Cooper KD, Torczon L (1994) Improvements to graph coloring register allocation. ACM Trans
Program Lang Syst 16:428–455

8. Brisk P, Dabiri F, Jafari R, Sarrafzadeh M (2006) Optimal register sharing for high-level synthesis of
SSA form programs. IEEE Trans Comput-Aided Des Integr Circuits Syst 25:772–779

9. Brisk P, Sarrafzadeh M (2007) Interference graphs for procedures in static single information form are
interval graphs. In: Proceedings of the 10th international workshop on software and compilers for em-
bedded systems, Nice, France, 20 April 2007, pp 101–110

10. Brisk P, Verma AK, Ienne P (2007) An optimistic and conservative register assignment heuristic for
chordal graphs. In: Proceedings of the international conference on compilers, architecture, and synthesis
for embedded systems, Salzburg, Austria, 30 September–3 October 2007, pp 209–217

11. Budimlic Z, Cooper KD, Harvey TJ, Kennedy K, Oberg TS, Reeves SW (2002) Fast copy coalescing and
live range identification. In: Proceedings of the ACM SIGPLAN conference on programming language
design and implementation, Berlin, Germany, 17–19 June 2002, pp 25–32

12. Chaitin GJ (1982) Register allocation and spilling via graph coloring. In: Proceedings of the 1982 SIG-
PLAN symposium on compiler construction, Boston, MA, USA, 23–25 June 1982, pp 98–105

13. Chaitin GJ, Auslander MA, Chandra AK, Cocke J, Hopkins ME, Markstein PW (1981) Register alloca-
tion via coloring. Comput Lang 6:47–57

14. Choi J-D, Cytron R, Ferrante J (1991) Automatic construction of sparse data flow evaluation graphs. In:
Proceedings of the 18th ACM SIGPLAN/SIGACT symposium on principles of programming languages,
Orlando, FL, USA, 21–23 January 1991, pp 55–66

15. Cooper KD, Torczon L (2003) Engineering a compiler. Morgan Kaufmann, Los Altos (now a subsidiary
of Elsevier)

16. Cytron R, Ferrante J, Rosen BK, Wegman MN, Zadeck FK (1991) Efficiently computing static single
assignment form and the control dependence graph. ACM Trans Program Lang Syst 13:451–490

17. Ershov AP (1962) Reduction of the problem of memory allocation in programming to the problem of
coloring the vertices of graphs. Dokl Akad Nauk SSSR 142. English translation in Sov Math 3:163–165
(1962)

18. Fabri J (1979) Automatic storage optimization. In: Proceedings of the ACM SIGPLAN symposium on
compiler construction, Denver, CO, USA, 6–10 August 1979, pp 83–91

19. Farach-Colton M, Liberatore V (2000) On local register allocation. J Algorithms 37:37–65
20. Gavril F (1972) Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and

maximum independent set of a chordal graph. SIAM J Comput 1:180–187
21. George L, Appel AW (1996) Iterated register coalescing. ACM Trans Program Lang Syst 18:300–324
22. Grund D, Hack S (2007) A fast cutting-plane algorithm for optimal coalescing. In: 16th international

conference on compiler construction, Braga, Portugal, 26–30 March 2007, pp 111–125
23. Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T, Brown RB (2001) MiBench: a free, com-

mercially representative embedded benchmark suite. In: Proceedings of the 4th IEEE workshop on work-
load characterization, Austin TX, USA, 2 December 2001, pp 3–14

24. Hack S, Goos G (2006) Register allocation for SSA-form programs in polynomial time. Inf Process Lett
98:150–155

25. Hailperin M (2005) Comparing conservative coalescing criteria. ACM Trans Program Lang Syst 27:571–
582

26. Hashimoto A, Stevens J (1971) Wire routing by optimizing channel assignment within large apertures.
In: Proceedings of the 8th workshop on design automation, Atlantic City, NJ, USA, 28–30 June 1971,
pp 155–169

27. Kaluskar V (2003) An aggressive live range splitting and coalescing framework for efficient register
allocation. MS thesis, Georgia Institute of Technology, Atlanta, GA, USA, December 2003

Optimistic chordal coloring: a coalescing heuristic for SSA form 137

28. Kempe AB (1879) The geographical problem of the four colors. Am J Math 2:193–200
29. Lavrov SS (1961) Store economy in closed operator schemes. J Comput Math Math Phys 1:678–701.

English translation in USSR Comput Math Math Phys 3:810–828 (1962)
30. Lee C, Potkonjak M, Mangione-Smith WH (1997) MediaBench: a tool for evaluating and synthesiz-

ing multimedia and communications systems. In: Proceedings of the 30th international symposium on
microarchitecture, Research Triangle Park, NC, USA, 1–3 December 1997, pp 330–335

31. Lee JK, Palsberg J, Pereira FMQ (2007) Aliased register allocation for straight-line programs is NP-
Complete. In: Proceedings of the 34th international colloquium on automata, languages, and program-
ming, Wroclaw, Poland, 9–13 July 2007, pp 680–691

32. Park J, Moon S-M (2004) Optimistic register coalescing. ACM Trans Program Lang Syst 26:735–765
33. Pereira FMQ, Palsberg J (2006) Register allocation after classical SSA elimination is NP-Complete. In:

Proceedings of the 9th international conference on foundations of software science and computation
structures, Vienna, Austria, 25–31 March 2006, pp 79–83

34. Poletto M, Sarkar V (1999) Linear scan register allocation. ACM Trans Program Lang Syst 21:895–913
35. Rastello F, De Ferriere F, Guillon C (2004) Optimizing translation out of SSA using renaming con-

straints. In: Proceedings of the 2nd IEEE/ACM symposium on code generation and optimization, San
Jose, CA, USA, 20–24 March 2004, pp 265–278

36. Seward HH (1954) Information sorting in the application of electronic digital computers to business
operations. MS thesis. Massachusetts Institute of Technology, Cambridge, MA, USA

37. Sreedhar VC, Ju RD-C, Gillies DM, Santhanam V (1999) Translating out of static single assignment
form. In: Proceedings of the 6th international symposium on static analysis, 22–24 September 1999,
pp 194–210

38. Tarjan RE, Yannakakis M (1984) Simple linear time algorithms to test chordality of graphs, test acyclicity
of hypergraphs, and selectively reduce acylic hypergraphs. SIAM J Comput 13:566–579

39. Tseng C-J, Siewiorek DP (1986) Automated synthesis of data paths in digital systems. IEEE Trans
Comput-Aided Des Integr Circuits Syst 5:379–395

40. Vegdahl SR (1999) Using node merging to enhance graph coloring. In: Proceedings of the ACM SIG-
PLAN conference on programming language design and implementation, Atlanta, GA, USA, 1–4 May
1999, pp 150–154

	Optimistic chordal coloring: a coalescing heuristic for SSA form programs
	Abstract
	Introduction
	Contribution
	The coalescing problem
	Paper organization
	Statement of extension of prior work

	Preliminaries
	Graph notation
	Chordal graphs

	Related work
	Optimistic chordal coloring
	Steps (1)/(6): simplify/unsimplify
	Step (2): pseudo-coalescing
	Optimistic pseudo-coalescing
	Illegal pseudo-coalescing

	Step (3): compute PEO
	Step (4): color assignment and propagation
	Simplified color assignment heuristic
	De- and re-pseudo-coalescing
	Example 1: sym_decrypt
	Example 2: RPE_grid_positioning
	Detailed description of color assignment and propagation
	Example 3: susan_smoothing
	Example 4: jpeg_fill_bit_buffer

	Refinement
	Local refinement
	Aggressive refinement
	Example of aggressive refinement

	Time complexity
	Time complexity of simplification
	Time complexity of optimistic pseudo-coalescing
	Time complexity of illegal pseudo-coalescing
	Time complexity of color assignment and propagation
	Time complexity of local refinement
	Time complexity of aggressive refinement
	Time complexity of unsimplify
	Time complexity of OCC

	Experimental results
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

